摘要:
The present disclosure involves an illumination apparatus. The illumination apparatus includes an n-doped semiconductor compound layer, a p-doped semiconductor compound layer spaced apart from the n-doped semiconductor compound layer, and a multiple-quantum-well (MQW) disposed between the first semiconductor compound layer and the second semiconductor compound layer. The MQW includes a plurality of alternating first and second layers. The first layers of the MQW have substantially uniform thicknesses. The second layers have graded thicknesses with respect to distances from the p-doped semiconductor compound layer. A subset of the second layers located most adjacent to the p-doped semiconductor compound layer is doped with a p-type dopant. The doped second layers have graded doping concentration levels that vary with respect to distances from the p-doped semiconductor layer.
摘要:
The present disclosure involves an illumination apparatus. The illumination apparatus includes an n-doped semiconductor compound layer, a p-doped semiconductor compound layer spaced apart from the n-doped semiconductor compound layer, and a multiple-quantum-well (MQW) disposed between the first semiconductor compound layer and the second semiconductor compound layer. The MQW includes a plurality of alternating first and second layers. The first layers of the MQW have substantially uniform thicknesses. The second layers have graded thicknesses with respect to distances from the p-doped semiconductor compound layer. A subset of the second layers located most adjacent to the p-doped semiconductor compound layer is doped with a p-type dopant. The doped second layers have graded doping concentration levels that vary with respect to distances from the p-doped semiconductor layer.
摘要:
The present disclosure involves a light-emitting device. The light-emitting device includes an n-doped gallium nitride (n-GaN) layer located over a substrate. A multiple quantum well (MQW) layer is located over the n-GaN layer. An electron-blocking layer is located over the MQW layer. A p-doped gallium nitride (p-GaN) layer is located over the electron-blocking layer. The light-emitting device includes a hole injection layer. In some embodiments, the hole injection layer includes a p-doped indium gallium nitride (p-InGaN) layer that is located in one of the three following locations: between the MQW layer and the electron-blocking layer; between the electron-blocking layer and the p-GaN layer; and inside the p-GaN layer.
摘要:
This invention relates to structures and fabricating methods of light-emitting diodes capable of emitting white or a color within full-visible-spectrum with better efficiency and flexibility. An embodiment provides a light-emitting diode array consisted of one or more light-emitting diodes on a substrate. Each light-emitting diode comprises a first doped nanorod, an active light-emitting region consisted of one or more nanodisks on the first doped nanorod, and a second doped nanorod on the active light-emitting region. Another embodiment provides a fabricating method of the light-emitting diode array.
摘要:
Embodiments of the present invention provides III-nitride light-emitting diodes, which primarily include a first electrode, a n-type gallium nitride (GaN) nanorod array consisted of one or more n-type GaN nanorods ohmic contacting with the first electrode, one or more indium gallium nitride (InGaN) nanodisks disposed on each of the n-type GaN nanorods, a p-type GaN nanorod array consisted of one or more p-type GaN nanorods, where one p-type GaN nanorod is disposed on top of the one ore more InGaN nanodisks disposed on each of the n-type GaN nanorods, and a second electrode ohmic contacts with the p-type GaN nanorod array.
摘要:
Embodiments of the present invention provides III-nitride light-emitting diodes, which primarily include a first electrode, a n-type gallium nitride (GaN) nanorod array consisted of one or more n-type GaN nanorods ohmic contacting with the first electrode, one or more indium gallium nitride (InGaN) nanodisks disposed on each of the n-type GaN nanorods, a p-type GaN nanorod array consisted of one or more p-type GaN nanorods, where one p-type GaN nanorod is disposed on top of the one ore more InGaN nanodisks disposed on each of the n-type GaN nanorods, and a second electrode ohmic contacts with the p-type GaN nanorod array.
摘要:
The invention is directed to a group-III nitride vertical-rods substrate. The group-III vertical-rods substrate comprises a substrate, a buffer layer and a vertical rod layer. The buffer layer is located over the substrate. The vertical rod layer is located on the buffer layer and the vertical rod layer is comprised of a plurality of vertical rods standing on the buffer layer.
摘要:
The invention is directed to a group-III nitride vertical-rods substrate. The group-III vertical-rods substrate comprises a substrate, a buffer layer and a vertical rod layer. The buffer layer is located over the substrate. The vertical rod layer is located on the buffer layer and the vertical rod layer is comprised of a plurality of vertical rods standing on the buffer layer.
摘要:
This invention relates to structures and fabricating methods of light-emitting diodes capable of emitting white or a color within full-visible-spectrum with better efficiency and flexibility. An embodiment provides a light-emitting diode array consisted of one or more light-emitting diodes on a substrate. Each light-emitting diode comprises a first doped nanorod, an active light-emitting region consisted of one or more nanodisks on the first doped nanorod, and a second doped nanorod on the active light-emitting region. Another embodiment provides a fabricating method of the light-emitting diode array.