摘要:
The present disclosure involves a method of fabricating a semiconductor device. A surface of a silicon wafer is cleaned. A first buffer layer is then epitaxially grown on the silicon wafer. The first buffer layer contains an aluminum nitride (AlN) material. A second buffer layer is then epitaxially grown on the first buffer layer. The second buffer layer includes a plurality of aluminum gallium nitride (AlxGa1-xN) sub-layers. Each of the sub-layers has a respective value for x that is between 0 and 1. A value of x for each sub-layer is a function of its position within the second buffer layer. A first gallium nitride (GaN) layer is epitaxially grown over the second buffer layer. A third buffer layer is then epitaxially grown over the first GaN layer. A second GaN layer is then epitaxially grown over the third buffer layer.
摘要:
The present disclosure involves an apparatus. The apparatus includes a substrate having a front side a back side opposite the front side. The substrate includes a plurality of openings formed from the back side of the substrate. The openings collectively define a pattern on the back side of the substrate from a planar view. In some embodiments, the substrate is a silicon substrate or a silicon carbide substrate. Portions of the silicon substrate vertically aligned with the openings have vertical dimensions that vary from about 100 microns to about 300 microns. A III-V group compound layer is formed over the front side of the silicon substrate. The III-V group compound layer is a component of one of: a light-emitting diode (LED), a laser diode (LD), and a high-electron mobility transistor (HEMT).
摘要:
The present disclosure involves an illumination apparatus. The illumination apparatus includes an n-doped semiconductor compound layer, a p-doped semiconductor compound layer spaced apart from the n-doped semiconductor compound layer, and a multiple-quantum-well (MQW) disposed between the first semiconductor compound layer and the second semiconductor compound layer. The MQW includes a plurality of alternating first and second layers. The first layers of the MQW have substantially uniform thicknesses. The second layers have graded thicknesses with respect to distances from the p-doped semiconductor compound layer. A subset of the second layers located most adjacent to the p-doped semiconductor compound layer is doped with a p-type dopant. The doped second layers have graded doping concentration levels that vary with respect to distances from the p-doped semiconductor layer.
摘要:
The present disclosure involves an illumination apparatus. The illumination apparatus includes an n-doped semiconductor compound layer, a p-doped semiconductor compound layer spaced apart from the n-doped semiconductor compound layer, and a multiple-quantum-well (MQW) disposed between the first semiconductor compound layer and the second semiconductor compound layer. The MQW includes a plurality of alternating first and second layers. The first layers of the MQW have substantially uniform thicknesses. The second layers have graded thicknesses with respect to distances from the p-doped semiconductor compound layer. A subset of the second layers located most adjacent to the p-doped semiconductor compound layer is doped with a p-type dopant. The doped second layers have graded doping concentration levels that vary with respect to distances from the p-doped semiconductor layer.
摘要:
The present disclosure involves a method of fabricating a semiconductor device. A surface of a silicon wafer is cleaned. A first buffer layer is then epitaxially grown on the silicon wafer. The first buffer layer contains an aluminum nitride (AlN) material. A second buffer layer is then epitaxially grown on the first buffer layer. The second buffer layer includes a plurality of aluminum gallium nitride (AlxGa1−xN) sub-layers. Each of the sub-layers has a respective value for x that is between 0 and 1. A value of x for each sub-layer is a function of its position within the second buffer layer. A first gallium nitride (GaN) layer is epitaxially grown over the second buffer layer. A third buffer layer is then epitaxially grown over the first GaN layer. A second GaN layer is then epitaxially grown over the third buffer layer.
摘要翻译:本公开涉及制造半导体器件的方法。 清洁硅晶片的表面。 然后在硅晶片上外延生长第一缓冲层。 第一缓冲层含有氮化铝(AlN)材料。 然后在第一缓冲层上外延生长第二缓冲层。 第二缓冲层包括多个氮化镓铝(Al x Ga 1-x N)子层。 每个子层具有在0和1之间的x的相应值。每个子层的x的值是其在第二缓冲层内的位置的函数。 在第二缓冲层上外延生长第一氮化镓(GaN)层。 然后在第一GaN层上外延生长第三缓冲层。 然后在第三缓冲层上外延生长第二GaN层。
摘要:
The present disclosure involves an apparatus. The apparatus includes a photonic die structure that includes a light-emitting diode (LED) die. The LED die is a vertical LED die in some embodiments. The LED die includes a substrate. A p-doped III-V compound layer and an n-doped III-V compound layer are each disposed over the substrate. A multiple quantum well (MQW) layer is disposed between the p-doped III-V compound layer and the n-doped III-V compound layer. The p-doped III-V compound layer includes a first region having a non-exponential doping concentration characteristic and a second region having an exponential doping concentration characteristic. In some embodiments, the second region is formed using a lower pressure than the first region.
摘要:
The present disclosure involves an apparatus. The apparatus includes a substrate having a front side a back side opposite the front side. The substrate includes a plurality of openings formed from the back side of the substrate. The openings collectively define a pattern on the back side of the substrate from a planar view. In some embodiments, the substrate is a silicon substrate or a silicon carbide substrate. Portions of the silicon substrate vertically aligned with the openings have vertical dimensions that vary from about 100 microns to about 300 microns. A III-V group compound layer is formed over the front side of the silicon substrate. The III-V group compound layer is a component of one of: a light-emitting diode (LED), a laser diode (LD), and a high-electron mobility transistor (HEMT).
摘要:
The present disclosure involves an apparatus. The apparatus includes a photonic die structure that includes a light-emitting diode (LED) die. The LED die is a vertical LED die in some embodiments. The LED die includes a substrate. A p-doped III-V compound layer and an n-doped III-V compound layer are each disposed over the substrate. A multiple quantum well (MQW) layer is disposed between the p-doped III-V compound layer and the n-doped III-V compound layer. The p-doped III-V compound layer includes a first region having a non-exponential doping concentration characteristic and a second region having an exponential doping concentration characteristic. In some embodiments, the second region is formed using a lower pressure than the first region.
摘要:
The present disclosure involves an apparatus. The apparatus includes a photonic die structure that includes a plurality of layers. A current blocking layer is embedded in one of the plurality of layers. The current blocking layer is a doped layer. The present disclosure also involves a method of fabricating a light-emitting diode (LED). As a part of the method, an LED is provided. The LED includes a plurality of layers. A patterned mask is then formed over the LED. The patterned mask contains an opening. A dopant is introduced through the opening to a layer of the LED through either an ion implantation process or a thermal diffusion process. As a result of the dopant being introduced, a doped current blocking component is formed to be embedded within the layer of the LED.
摘要:
A semiconductor light emitting device is disclosed, which comprises: a substrate having a first surface and a second surface; a first semiconductor conductive layer is disposed on the first surface of the substrate; an insert layer is disposed on the first semiconductor conductive layer; an active layer is disposed on the insert layer; a second semiconductor conductive layer is disposed on the active layer; a first electrode is disposed on the second semiconductor conductive layer; and a second electrode is disposed on the second surface of the substrate, in which the electric of the second electrode is opposite to that of the first electrode.