Abstract:
A surface mount coil component includes an element body defining a compact including magnetic material particles; a coil that is buried, excluding an end portion of the coil, in the element body; and an input-output terminal electrically connected to the end portion of the coil. A thermoplastic resin layer is provided on a surface on a mounting surface side of the element body. An interlayer connection conductor is provided in the thermoplastic resin layer. The input-output terminal is provided on a surface of the thermoplastic resin layer and is electrically connected to the end portion of the coil via the interlayer connection conductor.
Abstract:
A coil component that includes a coil having a thick coil core and good inductance characteristics and is able to narrow the pitch of a coil electrode is provided. The wiring of a coil electrode in a direction across the direction of a winding axis of the coil electrode includes a plurality of first metal pins and a plurality of second metal pins. By elongating each metal pin, the wiring of the coil electrode is easily elongated in a metal pin direction. Thus, a coil core is easily thickened in the metal pin direction. The wiring of the coil electrode can be formed in the metal pin direction only by arranging the metal pins. Thus, it is possible to provide a coil component that includes a coil having the thick coil core and good inductance characteristics and is able to narrow the pitch of the coil electrode.
Abstract:
A fuse includes an insulating substrate, a wiring, low-melting-point metal portions insulating layers and metal films. The wiring is located on one principal surface of the insulating substrate. The low-melting-point metal portions are provided over the wiring. The low-melting-point metal portions have a lower melting point than the wiring, and dissolves the wiring when the portions turn into a melt. The insulating layers are located between the wiring and the low-melting-point metal portions. The metal films are located outside the insulating layers on the insulating substrate.
Abstract:
An electronic component module is provided that includes a substrate, an electronic component, a heat dissipating member, and a sealing resin. The electronic component is mounted on the substrate. The heat dissipating member includes a flat plate and columnar bodies. The sealing resin covers a side of a first main surface of the substrate and the electronic component. Moreover, the heat dissipating member, except for a top surface of the flat plate, is covered with the sealing resin. The columnar bodies are disposed at an outer peripheral of the flat plate, and have a shape protruding from a bottom surface of the flat plate. The columnar bodies include a root connected to the flat plate, and a tip connected to the substrate. In a plan view of the electronic component module, the tip is not outside the root.
Abstract:
An inductor component includes an inductor electrode having two metal pins that form input and output terminals and a connecting conductor that connects one end of each of the metal pins to each other, the inductor electrode arranged such that other ends of the metal pins oppose each other, and a resin layer containing the inductor electrode such that other ends of the metal pins are exposed. The resin layer is formed having a single-layer structure. Variation in the characteristics of the inductor electrode can be reduced as compared to a case where the parts corresponding to the metal pins of the inductor electrode are formed as via conductors or through-hole conductors. Because the resin layer has a single-layer structure, stress acting on joint portions between the metal pins and the connecting conductor can be reduced, which makes it possible to improve the reliability of the inductor component.
Abstract:
A coil component is provided with only first and second columnar conductors that are a part of a coil electrode. This can simplify the manufacturing process and reduce the cost of the coil component. A wiring substrate is provided with substrate-side wiring electrode traces that form the remaining part of the coil electrode. In the process of forming the wiring substrate using a substrate forming technique commonly used, the substrate-side wiring electrode traces can be easily formed together with other wiring electrodes. Therefore, when the coil electrode is configured to be formed by placing the coil component on the wiring substrate, a coil module including the coil component can be inexpensively manufactured.
Abstract:
A coil component includes an insulating layer; an annular ring-shaped coil core embedded in the insulating layer; a coil electrode wound around the coil core; an input electrode designed for external connection, disposed on a lower surface of the insulating layer, and connected to a first end of the coil electrode; and an output electrode designed for external connection, disposed on the lower surface of the insulating layer, and connected to a second end of the coil electrode. One of the input electrode and the output electrode is disposed inside the coil core in a plan view. With this configuration, unlike a conventional coil component in which both input and output electrodes are disposed outside a coil core, it is possible not only to easily reduce the area of the coil component in a plan view, but also to improve heat dissipation characteristics of the coil component.
Abstract:
A module includes: an insulating layer; an annular coil core in the insulating layer; a coil electrode having outer metal pins arranged along an outer circumferential surface of the coil core, inner metal pins arranged along an inner circumferential surface of the coil core to form pairs with corresponding outer metal pins 7, bonding wires, each connecting one end surface of each outer metal pin and inner metal pin that form a pair, and wiring electrode patterns, each connecting another end surface of each outer metal pin to another end surface of an inner metal pin adjacent in a predetermined direction to the inner metal pin that forms a pair with the outer metal pin; and a buffer layer, formed from a non-conductive material having a lower elastic modulus than the insulating layer, that covers the surface of the coil core.
Abstract:
An electronic device includes an insulating layer, a plurality of upper wiring electrode patterns formed on an upper surface of the insulating layer, and a plurality of lower wiring electrode patterns formed on a lower surface of the insulating layer. The upper wiring electrode patterns and the lower wiring electrode patterns each include an underlying electrode layer formed of a conductive paste and a plating electrode layer formed on the underlying electrode layer. With this configuration, the resistivity of the upper and lower wiring electrode patterns and can be made lower than that of the upper and lower wiring electrode patterns and each including only the underlying electrode layer formed of a conductive paste.
Abstract:
A multilayer ceramic substrate includes a ceramic element body including a plurality of stacked ceramic layers, a resistor including a resistance film disposed between the ceramic layers, and a lead via conductor penetrating the ceramic layers in a thickness direction and connected at a first end portion to the resistance film. The resistance film and the lead via conductor both contain, for example, Ni and Cu that constitute an alloy resistive material. A concentration of the Ni component in the lead via conductor has a gradient structure that is comparatively high in the first end portion connected to the resistance film and gradually decreases from the first end portion toward a second end portion opposite therefrom.