Abstract:
This logic integrated circuit has a plurality of first switch cells including variable resistance elements and a plurality of second switch cells including variable resistance elements. The logic integrated circuit comprises: a first output port and a second output port; the plurality of first switch cells for switching the electrical connections between a first wire and a third wire; the plurality of second switch cells for switching the electrical connections between a second wire and the third wire; a first control transistor which is connected to the first wire and which is for switching the electrical connections between the first wire and a first power line supplying power to the first wire; and a second control transistor which is connected to the second wire and which is for switching the electrical connections between the second wire and the first power line supplying power to the second wire.
Abstract:
A reconfigurable circuit includes: a plurality of first lines; one or more second lines; a non-volatile resistive cell coupling one of the first lines with one of the second lines at each cross-point between the first lines and the second lines; and first switch elements including first terminals respectively coupled to the first lines, wherein each of the first switch elements is separately turned on or off in accordance with a control signal applied thereto.
Abstract:
The purpose of the present invention is to increase the efficiency with which silicon on a chip is used, and to easily reduce the size of a logic cell. To accomplish the purpose, this reconfigurable circuit includes: a logic memory unit configured from a resistance change element, and positioned distributed into at least two units; a logic unit for referencing the logic memory unit and performing logical operations; and a signal path switching unit for receiving the results of the logical operation of the logic unit and outputting said results to the outside. The logic memory part and the signal path switching part constitute part of a crossbar switching circuit, and share write wiring to the resistance change element.
Abstract:
A reconfigurable circuit comprising: a first line; a first switch element disposed between the first line and a first power source line of first voltage; a second line; a second switch element disposed between the second line and a second power source line of second voltage which is different from the first voltage; and a resistive switch assembly disposed between the first line and the second line. The resistive switch assembly including a first non-volatile resistive switch, and a second non-volatile resistive switch whose first end is coupled to a first end of the first non-volatile resistive switch. The second end of the first non-volatile resistive switch is coupled to the first line, and the second end of the second non-volatile resistive switch is coupled to the second line.
Abstract:
A reconfigurable circuit comprising: a first level crossbar switch that has first non-volatile resistive switches; a second level crossbar switch that has second non-volatile resistive switches; and a first wire and third non-volatile resistive switches that are used for redundancy, wherein input wires of the second level crossbar switch are connected to output wires of the first level crossbar switch one-to-one, and input wires of the first level crossbar switch and output wires of the second level crossbar switch are connected to the first wire through the third non-volatile resistive switches.
Abstract:
In a programmable logic integrated circuit, providing a spare circuit in preparation for the occurrence of a defective element results in a redundant circuit configuration. A programmable logic integrated circuit according to the present invention has: a plurality of logic blocks; a switch block for switching the connections between row and column wires by nonvolatile switch elements for switching; and a shifter block for connecting an input/output wire to said switch block. The shifter block includes a redundant wire and is equipped with nonvolatile switch elements for shifting that control the connections of the wires constituting said redundant wire and said row wires.
Abstract:
A semiconductor integrated circuit (100) comprising: a plurality of processing circuits (11, 12, 13) each including a notification units for outputting a notification signal according to the processing state of the own processing circuit; a plurality of power supply switch units (SW1, SW2, SW3) for switching the connection states between the respective processing circuits and a power supply source; a power supply switch control circuit which is connected with the notification means (111, 121, 131), stores power supply control information (101) including a plurality of connection statuses, and controls the connection states on the basis of the notification signals and the power supply control information; and a data bus (BS) and the like connecting each of the processing circuits and the power supply switch control circuit, wherein: at least two or more of the plurality of processing circuits update the power supply control information via the data bus and the like before outputting a notification signal; and the power supply switch control circuit accepts a notification signal outputted from any one of the plurality of processing circuits after the update, and accordingly controls the connection states of respective ones of the plurality of power supply switch units on the basis of the updated power supply control information.
Abstract:
Provided is a quantum chip that includes a substrate, a superconducting layer formed on a surface of the substrate, an electrode formed on a surface of the superconducting layer along an outer edge of the substrate, and a periodic structure formed on a surface of the superconducting layer along an outer edge of the substrate.
Abstract:
A design assistance system according to the present invention assists in designing a circuit to be mounted on a programmable logic integrated circuit including a resistance change element. The design assistance system includes: a memory; and at least one processor coupled to the memory. The processor performs operations. The operations includes: generating rewriting history information indicating a number (count) of changing times of a state of the resistance change element; calculating an abrasion cost of a switch included in the circuit, based on the rewriting history information; and carrying out wiring of the circuit, based on an evaluation function including the abrasion cost.
Abstract:
A semiconductor device includes: first wires which extend in a first direction; second wires extending in a second direction; a unit element which comprises two variable resistance elements connected in series, and has one end connected to a first wire and the other end connected to a second wire; a first control line for controlling the supply of a voltage to the first wire; a second control line for controlling the supply of a voltage to the second wire; and a cell circuit connected to an intermediate node between the two variable resistance elements and also connected to the first control line and the second control line. The cell circuit has: a cell transistor connected to an intermediate node writing driver which supplies a voltage to the intermediate node; and a cell control circuit which controls an electrical conduction state of the cell transistor.