Abstract:
A light emitting device includes: a first substrate including: a first lead, and a second lead positioned apart from the first lead; a second substrate disposed on an upper face of the second lead, the second substrate including: a base, and a first conducting part disposed on an upper face of the base; a light emitting element disposed on the second substrate and electrically connected to the first conducting part; a first wire electrically connecting the first lead and the first conducting part; and a wall part straddling and covering an upper face of the first lead and an upper face of the second lead. A height of the wall part is less than a height of the second substrate.
Abstract:
A method of manufacturing a light-emitting module that includes providing a light-transmissive member joined body that includes a plurality of submounts, a plurality of light-emitting elements each of which is disposed on a respective one of submounts, and a single light-transmissive member disposed on the light-emitting elements. The method further includes disposing the light-transmissive member joined body on a module board such that the submounts face the module board, forming a plurality of element structures by dividing the single light-transmissive member for each light-emitting element into the element structures each of which includes the submount, the light-emitting element, and the light-transmissive member positioned in this order, and forming a first covering member on the module board to cover lateral surfaces of the element structures.
Abstract:
A light emitting device including a plurality of element structures each including a submount, a light emitting element, and a light transmissive member, in this order. The light emitting device further includes a first cover member holding the element structures by covering lateral faces of each of the element structures.
Abstract:
A method of manufacturing a light emitting device includes: providing a plurality of first element structures each including a submount, a light emitting element, and a light transmissive member, in this order; disposing the first element structures on a sheet member such that the submount in each of the first element structures faces the sheet member; and forming a first cover member on the sheet member so as to cover lateral faces of the first element structures.
Abstract:
A light-emitting device includes a light-emitting element, a phosphor layer, a reflective film, and a light-transmissive member. The light emitting element emits first light. The phosphor layer is provided on a light-emitting surface of the light-emitting element, and contains a phosphor being excited by the first light to emit second light with a wavelength longer than a wavelength of the first light. The reflective film is provided on the phosphor layer, reflects the contact with the reflective film.
Abstract:
A light emitting device that includes a plurality of element structures, a frame, and a covering member. Each of the plurality of element structures includes a light emitting element. The frame surrounds the plurality of element structures. The covering member is disposed on an inner side of the frame. The covering member is disposed between the frame and an element structure of the plurality of element structures adjacent to the frame and between adjacent element structures of the plurality of element structures. An upper surface and a lower surface of each of the plurality of element structures are exposed from the covering member.
Abstract:
A method for manufacturing a light emitting device includes: joining a light transmissive substrate and two or more light emitting elements; separating the light transmissive substrate into a plurality of light transmissive pieces such that one or more of the light emitting elements remains in a state joined to one of the light transmissive pieces; mounting the one or more of the light emitting elements joined to the one of the light transmissive pieces on a mounting unit; removing a portion of the one of the light transmissive pieces such that a top surface of the one of the light transmissive pieces becomes a predetermined shape; and after the removing of the portion of the one of the light transmissive pieces, separating the mounting unit into a plurality of board pieces such that one or more of the light transmissive pieces remain on one of the board pieces.
Abstract:
A method for manufacturing a light distribution member has steps of providing a plurality of first light blocking film members, each of which including a first light blocking film covering a surface of a light-transmissive board, bonding a plurality of first light blocking film members, such that each first light blocking film is sandwiched between light-transmissive boards of adjacent first light blocking film members, to form a first bonded body, and cutting the first bonded body in a direction perpendicular to a lamination surface of the first light blocking film members so as to form a plurality of slices.
Abstract:
A light emitting device Includes a light emitting element, a light transmissive member, and a cover member. The light transmissive member is disposed on an upper face of the light emitting element. The cover member covers a lateral face of the light emitting element and a lateral face of the light transmissive member, and includes first and second cover members. The first cover member is disposed adjacent to the lateral face of the light emitting element and the lateral face of the light transmissive member, and contains a first light reflecting material and a fluorine-based first resin. The second cover member covers the first cover member, and contains a second light reflecting material and a second resin. A refractive index difference between the first light reflecting material and the first resin is larger than a refractive index difference between the second light reflecting material and the second resin.
Abstract:
A method for manufacturing a light emitting device includes: joining a light transmissive substrate and light emitting elements with top surfaces of the light emitting elements facing a bottom surface of the light transmissive substrate; separating the light transmissive substrate into a plurality of light transmissive pieces such that one or more of the light emitting elements remains in a state joined to one of the light transmissive pieces after separation; mounting the light emitting element joined to the light transmissive piece on a mounting unit, with a bottom surface of the light emitting element facing a top surface of the mounting unit; removing a portion of the light transmissive piece such that a top surface of the light transmissive piece becomes a predetermined shape; and providing a light reflective member around the top surface of the light transmissive piece that remains after the portion of the light transmissive piece is removed.