Abstract:
A light emitting device uses an Ag wire and exhibits excellent light extraction efficiency. In the light emitting device, a pad electrode of a light emitting element and a mount electrode are connected to each other using an Ag wire. The pad electrode contains Pt in a region where the Ag wire is bonded.
Abstract:
There is provided a semiconductor element including a semiconductor layer, a translucent electrode which is formed on the semiconductor layer, and a pad electrode which is formed on the translucent electrode, wherein the translucent electrode includes a recessed part on which the pad electrode is mounted, and wherein a thickness of a bottom surface of the recessed part of the translucent electrode is more than 0% of and equal to or less than 70% of a thickness of a part of the translucent electrode other than the recessed part.
Abstract:
A semiconductor light emitting element includes a semiconductor layered body including an n-side semiconductor layer and a p-side semiconductor layer disposed above the n-side semiconductor layer, an insulating film defining a plurality of first n-side openings on the n-side semiconductor layer in an inner region and a plurality of second n-side openings on an outer peripheral region of the n-side semiconductor layer, an n-electrode disposed extending over the insulating film and the outer peripheral region of the n-side semiconductor layer and including: a plurality of first n-contact portions, each electrically connected with the n-side semiconductor layer through a respective one of the first n-side openings, and a plurality of second n-contact portions, each electrically connected with the n-side semiconductor layer through a respective one of the second n-side openings, at the outer peripheral region of the n-side semiconductor layer.
Abstract:
A light emitting element includes a semiconductor layered body, an insulating film, first and second electrodes, and first and second external connection parts. The first semiconductor layer is exposed from the light emitting layer and the second semiconductor layer at exposed portions arranged in columns each extending in a first direction. The insulating film defines openings respectively located above the exposed portions. The first electrode is connected to the first semiconductor layer through the openings and covers a part of the second semiconductor layer via the insulating film. The first external connection part is connected to the first electrode and spaced apart from the exposed portions in the plan view. The first external connection part has a shape elongated in the first direction between adjacent ones of the columns of the exposed portions. The second external connection part is connected to the second semiconductor layer via the second electrode.
Abstract:
A light emitting element includes an n-type semiconductor layer having an upper surface; a p-type semiconductor layer over a portion of the upper surface of the n-type semiconductor layer, the p-type semiconductor layer having an upper surface; a protective film continuously covering the n-type semiconductor layer and the p-type semiconductor layer, the protective film defining an n-side opening at the upper surface of the n-type semiconductor layer and a p-side opening at an upper surface of the p-type semiconductor layer; a p-side electrode on the upper surface of the p-type semiconductor layer that is exposed in the p-side opening; an n-side electrode on the upper surface of the n-type semiconductor layer that is exposed at the n-side opening, n-side electrode having an n-side light-transmissive electrode; and an n-side pad electrode on the upper surface of the n-side light-transmissive electrode.
Abstract:
A semiconductor light emitting element includes a semiconductor layered body including an n-side semiconductor layer and a p-side semiconductor layer disposed above the n-side semiconductor layer, an insulating film defining a plurality of first n-side openings on the n-side semiconductor layer in an inner region and a plurality of second n-side openings on an outer peripheral region of the n-side semiconductor layer, an n-electrode disposed extending over the insulating film and the outer peripheral region of the n-side semiconductor layer and including: a plurality of first n-contact portions, each electrically connected with the n-side semiconductor layer through a respective one of the first n-side openings, and a plurality of second n-contact portions, each electrically connected with the n-side semiconductor layer through a respective one of the second n-side openings, at at least four corners of the outer peripheral region of the n-side semiconductor layer.
Abstract:
A light emitting element includes an n-type semiconductor layer having an upper surface; a p-type semiconductor layer over a portion of the upper surface of the n-type semiconductor layer, the p-type semiconductor layer having an upper surface; a protective film continuously covering the n-type semiconductor layer and the p-type semiconductor layer, the protective film defining an n-side opening at the upper surface of the n-type semiconductor layer and a p-side opening at an upper surface of the p-type semiconductor layer; a p-side electrode on the upper surface of the p-type semiconductor layer that is exposed in the p-side opening; an n-side electrode on the upper surface of the n-type semiconductor layer that is exposed at the n-side opening, n-side electrode having an n-side light-transmissive electrode; and an n-side pad electrode on the upper surface of the n-side light-transmissive electrode.