摘要:
The present disclosure provides systems and methods for configuring and constructing a single photo detector or array of photo detectors with all fabrications circuitry on a single side of the device. Both the anode and the cathode contacts of the diode are placed on a single side, while a layer of laser treated semiconductor is placed on the opposite side for enhanced cost-effectiveness, photon detection, and fill factor.
摘要:
The present disclosure provides systems and methods for configuring and constructing a single photo detector or array of photo detectors with all fabrications circuitry on a single side of the device. Both the anode and the cathode contacts of the diode are placed on a single side, while a layer of laser treated semiconductor is placed on the opposite side for enhanced cost-effectiveness, photon detection, and fill factor.
摘要:
The present disclosure provides systems and methods for configuring and constructing a single photo detector or array of photo detectors with all fabrications circuitry on a single side of the device. Both the anode and the cathode contacts of the diode are placed on a single side, while a layer of laser treated semiconductor is placed on the opposite side for enhanced cost-effectiveness, photon detection, and fill factor.
摘要:
The present invention relates generally to methods for high throughput and controllable creation of high performance semiconductor substrates for use in devices such as high sensitivity photodetectors, imaging arrays, high efficiency solar cells and the like, to semiconductor substrates prepared according to the methods, and to an apparatus for performing the methods of the invention.
摘要:
The present invention relates generally to methods for high throughput and controllable creation of high performance semiconductor substrates for use in devices such as high sensitivity photodetectors, imaging arrays, high efficiency solar cells and the like, to semiconductor substrates prepared according to the methods, and to an apparatus for performing the methods of the invention.
摘要:
A method of forming a phase-change random access memory (PRAM) cell, and a structure of a phase-change random access memory (PRAM) cell are disclosed. The PRAM cell includes a bottom electrode, a heater resistor coupled to the bottom electrode, a phase change material (PCM) thrilled over and coupled to the heater resistor, and a top electrode coupled to the phase change material. The phase change material contacts a portion of a vertical surface of the heater resistor and a portion of a horizontal surface of the heater resistor to form an active region between the heater resistor and the phase change material.
摘要:
A one time programmable (OPT) and multiple time programmable (MTP) structure is constructed in a back end of line (BEOL) process using only one, two or three masks. The OTP/MTP structure can be programmed in one of three states, a pre-programmed high resistance state, and a programmable low resistance state and a programmable very high resistance state. In the programmable low resistance state, a barrier layer is broken down during an anti-fuse programming so that the OTP/MTP structure exhibits resistance in the hundred ohm order of magnitude. In the very high resistance state a conductive fuse is blown open during programming so that the OTP/MTP structure exhibits resistance in the mega-ohm order of magnitude. The OTP/MTP structure may include a magnetic tunnel junction (MTJ) structure or a metal-insulator-metal (MIM) capacitor structure.
摘要:
Embodiments include a memory array having a plurality of bit lines and a plurality of source lines disposed in columns. A plurality of word lines is disposed in rows. A plurality of storage elements have a first subset of storage elements electrically decoupled from the memory array and a second subset of storage elements coupled to the memory array. The memory array further includes a plurality of bit cells, each including one storage element from the second subset of storage elements coupled to at least two transistors. The bit cells are coupled to the plurality of bit lines and the plurality source lines. Each transistor is coupled to one word line. The memory array can further include logic to select a high performance mode and a high density mode.