摘要:
One aspect of the invention relates to a method of a NOR-type flash memory and associated structure which comprises forming a flash memory array on a semiconductor substrate in a core region of the flash memory. The flash memory array comprises a plurality of flash memory cells which each have a source region and a drain region in the semiconductor substrate. A first portion of a first dielectric layer is formed over the flash memory array, and contact holes in the first dielectric layer are formed down to source regions of flash memory cells in the core region. A trench is then formed in the first dielectric layer and extends between the two contact holes. The contact holes and trench are then filled with a conductive material, thereby electrically coupling together the source regions of the two flash memory cells. A second portion of the first dielectric layer is then formed over the first portion of the first dielectric layer and the trench, thereby embedding the source contacts and trench in within the first dielectric layer.
摘要:
According to one exemplary embodiment, a two-bit memory cell situated over a substrate comprises a tunnel oxide layer situated over the substrate. The two-bit memory cell further comprises a first spacer and a second spacer situated over the tunnel oxide layer, where the first spacer is a first data bit storage location in the two-bit memory cell and the second spacer is a second data bit storage location in the two-bit memory cell. The first spacer and the second spacer may be, for example, silicon nitride or polycrystalline silicon. According to this exemplary embodiment, the two-bit memory cell further comprises an oxide layer situated between the first spacer and the second spacer. The two-bit memory cell further comprises a control gate situated over the oxide layer.
摘要:
A method and apparatus for testing semiconductors comprising shallow trench isolation (STI) edge structures. An edge intensive shallow trench isolation structure (500) is coupled to a voltage source (310) and a current profile is recorded. A planar structure (600) on the same wafer is coupled to a voltage source and a current profile is recorded. A comparison of current profiles obtained for the two types of structures may indicate the presence and/or extent of STI corner effects. More specifically, a steeper slope for a normalized current versus time plot for an STI edge intensive structure (500) compared to a slope of a normalized plot of a planar structure (600) is indicative of an increased rate of electron trapping in STI corners, which may indicate that the STI corners are too thin. In this novel manner, STI corner thickness is observed in a non-destructive, electrical test process, resulting in higher quality and greater reliability of semiconductors using STI processes.
摘要:
A method of generating a lifetime projection for semiconductor devices is disclosed. The disclosed method includes collecting lifetime information from a plurality of semiconductor devices at more than one stress condition. The method also includes determining the median lifetime for semiconductor devices at each of the stress conditions. Further, the method includes calculating a lifetime at each stress condition at which a predetermined percentage of the devices will exceed and extrapolating the lifetime for devices used at operating conditions.
摘要:
A floating gate flash memory device including a substrate including a source region, a drain region and a channel region positioned therebetween; a stack gate including a floating gate electrode, at least one of sidewall/spacers, second sidewalls or a barrier layer, in which the floating gate is positioned above the channel region. The floating gate may be separated from the channel region by one or more of a reverse tunnel dielectric layer, the barrier layer and a pad dielectric layer. The floating gate may be a metal floating gate.
摘要:
A process for fabrication of a floating gate flash memory device, and the device made thereby, including providing a semiconductor substrate; forming a pad dielectric layer overlying the substrate; forming a hard mask layer overlying the pad dielectric layer; forming an initial trench through the hard mask layer, wherein the initial trench has an initial lateral extent Li defined by opposite hard mask sidewalls in the hard mask layer; reducing the initial lateral extent Li of the initial trench to define a reduced trench having a reduced lateral extent Lrx, wherein x is at least one; and filling the reduced trench with a floating gate material.
摘要:
A method of generating an operating condition projection corresponding to a predetermined lifetime for semiconductor devices is disclosed. The disclosed method includes collecting lifetime information from a plurality of semiconductor devices at more than one stress condition by inducing a predetermined drain-source voltage for each stress condition. The method also includes determining the median lifetime for semiconductor devices at each of the stress conditions. Further, the method includes calculating a lifetime at each stress condition at which a predetermined percentage of the devices will exceed and extrapolating the lifetime for devices used at operating conditions.
摘要:
A method of memory device fabrication. In one embodiment, the method of memory device (400) fabrication comprises implanting an element (200) in a substrate (440). The element (200) causes an inherent elongational realignment of atoms in silicon (101,102) when silicon (100) is formed (471) upon the substrate (440) with the element (200) implanted therein. A layer of silicon (100) is formed (471) on the substrate having the element (200) implanted therein (470), wherein alignment of atoms (101) of the silicon elongates (102) to an atomical alignment equivalent (101g) to said element (200). The layer of silicon (471) and the substrate (470) are crystallized subsequent to the elongational realignment of atoms of the layer of silicon (101g), wherein a crystallized layer of elongated silicon (101g) decreases electron scattering thus realizing increase core gain in the memory device (400).
摘要:
A method and apparatus for testing semiconductors comprising shallow trench isolation (STI) edge structures. An edge intensive shallow trench isolation structure (500) is coupled to a voltage source (310) and a current versus voltage profile is recorded. A planar structure (600) on the same wafer is coupled to a voltage source and a current versus voltage profile is recorded. An electrical stress is applied to both structures. Additional current profiles of each structure are obtained after the electrical stress. A comparison of difference current profiles obtained for the two types of structures may indicate the presence and/or the extent of STI corner effects. More specifically, a value for a normalized gate current difference for an STI edge intensive structure (500) greater than normalized gate current difference of a planar structure (600) is indicative of an increased rate of electron trapping in STI corners, which may indicate that the STI corners are too thin. In this novel manner, STI corner thickness may be observed in a non-destructive, electrical test process, resulting in higher quality and greater reliability of semiconductors using STI processes.
摘要:
A method of processing a semiconductor device is disclosed and comprises applying a relatively high voltage across a gate stack of a flash memory cell for a certain period of time. Then, the polarity of the applied voltage is reversed and is again applied across the gate stack for another certain period of time. The voltage applied is greater than a channel erase voltage utilized for the memory cell. This applied voltage causes extrinsic defects to become amplified at interfaces of oxide/insulator layers of the gate stack. Then, the memory cell is tested (e.g., via a battery of tests) in order to determine if the memory cell is defective. If the cell is defective (e.g., fails the test), it can be assumed that substantial extrinsic defects were present in the memory cell and have been amplified resulting in the test failure. If the cell passes the test, it can be assumed that the memory cell is substantially free from extrinsic defects. Defective memory cells/devices can be marked or otherwise indicated as being defective.