摘要:
A gain-clamped semiconductor optical amplifier comprises: at least one first surface; at least one second surface, each second surface facing and electrically isolated from a respective first surface; a plurality of nanowires connecting each opposing pair of the first and second surfaces in a bridging configuration; and a signal waveguide overlapping the nanowires such that an optical signal traveling along the signal waveguide is amplified by energy provided by electrical excitation of the nanowires.
摘要:
A nanowire-based photonic device and an array employ nanowires connecting between coaxially arranged electrodes in a non-uniform manner along a vertical extent of the electrodes. The device includes a pair of the electrodes separated by a circumferential gap. The nanowires chaotically emanate from an inner electrode of the pair and connect across the circumferential gap to an outer electrode of the pair. The array includes an outer electrode having an interconnected pattern of cells and inner electrodes, one per cell, arranged coaxially with and separated from the outer electrode by respective circumferential gaps. The nanowires chaotically emanate from the inner electrodes and connect across the respective circumferential gaps of the cells to the outer electrode. The device and the arrays further include a semiconductor junction between the electrodes.
摘要:
A hetero-crystalline semiconductor device and a method of making the same include a non-single crystalline semiconductor layer and a nanostructure layer that comprises a single crystalline semiconductor nanostructure integral to a crystallite of the non-single crystalline semiconductor layer.
摘要:
Embodiments of the present invention are directed to nanowire-based systems for performing surface-enhanced Raman spectroscopy. In one embodiment, a system comprises a substrate (102) having a surface and a plurality of tapered nanowires (104) disposed on the surface. Each nanowire has a tapered end directed away from the surface. The system also includes a plurality of nanoparticles (110) disposed near the tapered end of each nanowire. When each nanowire is illuminated with light of a pump wavelength, Raman excitation light is emitted from the tapered end of the nanowire to interact with the nanoparticles and produce enhanced Raman scattered light from molecules located in close proximity to the nanoparticles.
摘要:
A method of forming nanostructures using catalyst-free epitaxial growth includes depositing a first layer of a non-single crystalline material on a support structure; heating the support structure and the first layer such that a combined layer is formed; and growing a nanostructure on the combined layer. A hetero-crystalline includes a support structure; a first layer of non-single crystalline material deposited on the support structure and combined with the support structure or a second layer to form a combined layer; and a nanostructure of a single crystalline material grown on the combined layer.
摘要:
A photonic device, a method of making the device and a nano-scale antireflector employ a bramble of nanowires. The photonic device and the method include a first layer of a microcrystalline material provided on a substrate surface and a second layer of a microcrystalline material provided on the substrate surface horizontally spaced from the first layer by a gap. The photonic device and the method further include, and the nano-scale antireflector includes, the bramble of nanowires formed between the first layer and the second layer. The nanowires have first ends integral to crystallites in each of the first layer and the second layer. The nanowires of the bramble extend into the gap from each of the first layer and the second layer.
摘要:
A hetero-crystalline device structure and a method of making the same include a first layer and a nanostructure integral to a crystallite in the first layer. The first layer is a non-single crystalline material. The nanostructure is a single crystalline material. The nanostructure is grown on the first layer integral to the crystallite using epitaxial growth.
摘要:
One embodiment in accordance with the invention is an apparatus that can include a non-single crystal substrate and a nanowire grown from a surface of the non-single crystal substrate. Furthermore, the apparatus can also include an electrode coupled to the nanowire. It is noted that the nanowire can be electrically conductive and/or optically active.
摘要:
A hetero-crystalline device structure and a method of making the same include a first layer and a nanostructure integral to a crystallite in the first layer. The first layer is a non-single crystalline material. The nanostructure is a single crystalline material. The nanostructure is grown on the first layer integral to the crystallite using epitaxial growth.
摘要:
Nanowire-based opto-electronic devices including nanowire lasers, photodetectors and semiconductor optical amplifiers are disclosed. The devices include nanowires grown from single crystal and/or non-single surfaces. The semiconductor optical amplifiers include nanowire arrays that act as ballast lasers to amplify a signal carried by a signal waveguide. Embodiments of the nanowire lasers and photodetectors include horizontal and vertical nanowires that can provide different polarizations.