摘要:
An organic electrolytic cell having a positive electrode, a negative electrode, and an electrolyte comprising a solution of a lithium salt in an aprotic organic solvent, wherein a positive electrode collector and a negative electrode collector have pores that penetrate from the front surface to the back surface, a positive electrode active material and a negative electrode active material can reversibly carry lithium, and, when the lithium derived from the negative electrode or the positive electrode is in electrochemical contact with the lithium disposed opposite the negative electrode or the positive electrode, the whole or part of the lithium passes through at least one layer of the positive electrode or the negative electrode and is carried. The opposing area of the lithium is not larger than 40 % of the area of the negative electrode and the porosity of each current collector is not less than 1 % and not more than 30 %.
摘要:
In a film-type battery, it is possible to increase energy density, however, it is difficult to obtain a high performance characteristic. Contrary to the above, a film-type storage device and an electric device including the film-type storage device having a storage body, which has a pair of positive and negative electrodes, and is sealed with a surface film, at least a part of which is sealed; and connecting terminals for connecting the positive and negative electrodes to the outside, a part of each of which is exposed, in which the exposed portions of the connecting terminals are located at non-sealed portions, can solve the above problem.
摘要:
A lithium ion capacitor having high energy density, high output density, high capacity and high safety includes a positive electrode made of a material capable of being reversibly doped with lithium ions and/or anions, a negative electrode made of a material capable of being reversively doped with lithium ions, and an aprotic organic solution of a lithium salt as an electrolytic solution. Wherein, the positive electrode and the negative electrode are laminated or wound with a separator interposed between them, the area of the positive electrode is smaller than the area of the negative electrode. The face of the positive electrode is substantially covered by the face of the negative electrode when they are laminated or wound.
摘要:
It is to provide a lithium ion capacitor having a high energy density, a high output density, a large capacity and high safety.A lithium ion capacitor comprising a positive electrode, a negative electrode and an aprotic organic solvent solution of a lithium salt as an electrolytic solution, wherein a positive electrode active material is a material capable of reversibly supporting lithium ions and anions, a negative electrode active material is a material capable of reversibly supporting lithium ions, and the potentials of the positive electrode and the negative electrode are at most 2.0 V after the positive electrode and the negative electrode are short-circuited, characterized in that the positive electrode and the negative electrode are respectively made by forming electrode layers by the positive electrode active material and the negative electrode active material on both sides of a positive electrode current collector and a negative electrode current collector each having pores penetrating from the front surface to the back surface, the capacitor has such a cell structure that the positive electrode and the negative electrode are wound or laminated, and the outermost portion of the wound or laminated electrodes is the negative electrode.
摘要:
An organic electrolyte capacitor. The organic capacitor is made up of a positive electrode, a negative electrode, and an electrolyte capable of transporting lithium ions. The organic capacitor exhibits a small change in internal resistance during charge and discharge, a high energy and a high output power, and allows lithium ions to move with ease. This is achieved by having a positive electrode that is able to support lithium ions and anions reversibly, a negative electrode that is able to support lithium ions reversibly, and controlling the ratio of positive electrode active material to negative electrode active material within an optimized range.
摘要:
A lithium ion capacitor having high energy density, high output density, high capacity and high safety is provided.A lithium ion capacitor comprising a positive electrode 1 made of a material capable of being reversibly doped with lithium ions and/or anions, a negative electrode 2 made of a material capable of being reversively doped with lithium ions, and an aprotic organic solution of a lithium salt as an electrolytic solution, wherein the positive electrode 1 and the negative electrode 2 are laminated or wound with a separator interposed between them, the area of the positive electrode 1 is smaller than the area of the negative electrode 2, and the face of the positive electrode 1 is substantially covered by the face of the negative electrode 2 when they are laminated or wound.
摘要:
An organic electrolyte capacitor having a high energy density and a high power and having a high capacitance even at −20° C. is provided.According to the organic electrolyte capacitor of the present invention, an organic electrolyte capacitor having a high discharge capacity even at a low temperature state as low as −20° C. while having a high voltage and a high energy density can be attained in an organic electrolyte capacitor having a positive electrode, a negative electrode, and an electrolyte capable of transporting lithium ions, in which the positive electrode can reversibly support lithium ions and anions, and the negative electrode can reversibly support the lithium ions by using a mesopored carbon material having a pore volume of 0.10 ml/g or more for pore diameter of 3 nm or larger.
摘要:
A organic electrolytic capacitor comprising a positive electrode, a negative electrode and an aprotic organic solvent of a lithium salt as an electrolytic solution, wherein a positive electrode active material is capable of reversibly holding lithium ions and anions, a negative electrode active material is capable of reversibly holding lithium ions, the negative electrode active material has three times or more capacitance per unit weight as the positive electrode active material, the weight of the positive electrode active material is larger than the weight of the negative electrode active material, and the negative electrode is provided with lithium deposited thereon in advance. Ease of manufacture, high capacity and high withstanding voltage are achieved with this constitution.
摘要:
A lithium ion capacitor includes a positive electrode, a negative electrode, and a non-protonic organic solvent electrolytic solution of a lithium salt. A positive electrode active material is a material capable of reversibly doping a lithium ion and/or an anion. A negative electrode active material is a material capable of reversibly doping a lithium ion. The lithium ion is doped in advance to either one or both of the negative electrode and the positive electrode so that a positive electrode potential after the positive electrode and the negative electrode are short-circuited is 2.0 V (relative to Li/Li+) or less when capacitance per unit weight of the positive electrode is C+(F/g), weight of the positive electrode active material is W+(g), capacitance per unit weight of negative electrode is C−(F/g), and weight of the negative electrode active material is W−(g), a value of (C−×W−)/(C+×W+) is 5 or more.
摘要:
An electrical storage device having a positive electrode, a negative electrode, a lithium electrode, and an electrolyte capable of transferring lithium ion, the lithium electrode is out of direct contact with the negative electrode, and lithium ion is supplied to the negative electrode by flowing a current between the lithium and negative electrode through an external circuit. A method of using the electrical storage device includes using the lithium electrode as a reference electrode, the positive electrode potential and negative electrode potential is measured, and the potential of the positive or negative electrode is controlled during charging or discharging. The potentials of the positive electrode and negative electrode are monitored to easily determine whether deterioration of the electrical storage device is caused by the positive or negative electrode. It is possible to control the device with the potential difference between the negative electrode and reference electrode, using the negative potential.