摘要:
One embodiment relates to a method of inspecting a substrate using electrons. Mirror-mode electron-beam imaging is performed on a region of the substrate at multiple voltage differences between an electron source and a substrate, and image data is stored corresponding to the multiple voltage differences. A calculation is made of a measure of variation of an imaged aspect of a feature in the region with respect to the voltage difference between the electron source and the substrate. Other embodiments and features are also disclosed.
摘要:
In accordance with one embodiment, the disclosure pertains to an apparatus for inspection of substrates. The apparatus includes at least a dual-energy e-beam source, an energy-dependent dispersive device, a beam separator, and an objective lens. The dual-energy e-beam source is configured to generate both a higher-energy e-beam component and a lower-energy e-beam component. Said two components exit the dual-energy e-source co-axially. The energy-dispersive device is configured to introduce dispersion between the two components. The components exit the dispersive device at different angles of trajectory. The beam separator is configured to receive the two dispersed components and substantially cancel the dispersion previously introduced by the dispersive device. As a result, the two components are rejoined in trajectory. Finally, the objective lens configured to focus said two rejoined components onto an area of the substrate.
摘要:
One embodiment disclosed relates to an apparatus for inspecting a substrate using charged particles. The apparatus includes an illumination subsystem, an objective subsystem, a projection subsystem, and a beam separator interconnecting those subsystems. Advantageously, the illumination subsystem includes a tilt deflector configured to controllably tilt the incident beam. The tilt of the incident beam caused by the tilt deflector is magnified prior to the incident beam impinging onto the substrate. This technique allows for achieving large beam tilts at the substrate without lens aberrations caused by introducing tilt at the objective lens and without complications due to using a tiltable stage. Other embodiments are also disclosed.
摘要:
One embodiment disclosed relates to an apparatus for reflection electron beam lithography. An electron source is configured to emit electrons. The electrons are reflected to a target substrate by portions of an electron-opaque patterned structure having a lower voltage level and are absorbed by portions of the structure having a higher voltage level. Another embodiment relates to a novel method of electron beam lithography. An incident electron beam is formed and directed to an opaque patterned structure. Electrons are reflected from portions of the structure having a lower voltage level applied thereto and are absorbed by portions of the structure having a higher voltage level applied thereto. The reflected electrons are directed towards a target substrate to form an image and expose a lithographic pattern.
摘要:
One embodiment disclosed relates to a reflective electron patterning device. The device includes a pattern on a surface. There is an electron reflective portion of the pattern and an electron non-reflective portion of the pattern. Another embodiment disclosed relates to a method of reflecting a pattern of electrons. An electron beam is generated to be incident upon a surface. The pattern is formed on the surface. The incident electrons are reflected from a reflective portion of the pattern are prevented from being reflected from a non-reflective portion of the pattern.
摘要:
Disclosed is an apparatus for electron beam inspection of a specimen with improved potential throughput. The apparatus includes an immersion objective lens focusing the primary electrons into a beam that impinges onto a spot on the specimen. Also disclosed is a method for automatic electron beam inspection of a specimen. The method includes producing a magnetic field towards the specimen that reduces aberration towards an outer portion of the multiple pixel imaging region.
摘要:
One embodiment disclosed is an electron beam apparatus for examination of a specimen. The apparatus includes a photocathode source, an objective lens, a beam separator, and a projection lens. The photocathode source generates a primary electron beam with reduced energy spread. The low energy spread beam is focused onto the specimen by the objective lens. The beam separator separates a scattered electron beam from the primary electron beam, and the projection lens images the scattered electron beam. Software routines may analyze the image data for purposes of automated inspection or review.
摘要:
One embodiment disclosed pertains to a method for inspecting a substrate. The method includes inserting the substrate into a holding place of a substrate holder, moving the substrate holder under an electron beam, and applying a voltage to a conductive element of the substrate holder. The voltage applied to the conductive element reduces a substrate edge effect. Another embodiment disclosed relates to an apparatus for holding a substrate that reduces a substrate edge effect. The apparatus includes a holding place for insertion of the substrate and a conductive element. The conductive element is positioned so as to be located within a gap between an edge of the holding place and an edge of the substrate.
摘要:
One embodiment relates to an apparatus for generating two spatially overlapping electron beams on a specimen. A first electron beam source is configured to generate a low-energy electron beam, and an energy-dispersive device bends the low-energy electron beam towards an semitransparent electron mirror. The semitransparent electron mirror is biased to reflect the low-energy electron beam. A second electron beam source is configured to generate a high-energy electron beam that passes through an opening in the semitransparent electron mirror. Both the low- and high-energy electron beams enter the same energy-dispersive device that bends both beams towards the specimen. A deflection system positioned between the high-energy electron source and semitransparent electron mirror is configured to deflect the high-energy electron beam by an angle that compensates for the difference in bending angles between the low- and high-energy electron beams introduced by the energy-dispersive device. Other embodiments are also disclosed.
摘要:
One embodiment pertains to an apparatus for reflection electron beam lithography, including at least illumination electron-optics, an electron-reflective pattern generator, projection electron-optics, a moving stage holding a target substrate, control circuitry, and a deflection system. The illumination electron-optics is configured to form an illumination electron beam. The electron-reflective pattern generator configured to generate an electron-reflective pattern of pixels and to reflect the illumination electron beam using the pattern to form a patterned electron beam. The projection electron-optics is configured to project the patterned electron beam onto the moving target substrate. The control circuitry is configured to shift the generated pattern in discrete steps in synchronization with the stage motion. The deflection system is configured to deflect said projected patterned electron beam so as to compensate for said stage motion in between discrete shifts of said generated pattern. Other features and embodiments are also disclosed.