摘要:
In a method of forming a semiconductor structure, an opening is formed in a layer of a dielectric material provided over an electrically conductive feature. An etching process is performed in order to form a recess in the electrically conductive feature. The bottom of the recess may have a rounded shape. The recess and the opening are filled with an electrically conductive material. Due to the provision of the recess, electromigration, stress migration and a local heating of the semiconductor structure, which may adversely affect the functionality of the semiconductor structure, can be reduced.
摘要:
By providing a stiffening layer at three sidewalls of a trench to be filled with a copper-containing metal, the reduced thermomechanical confinement of a low-k material may be compensated for, at least to a certain degree, thereby reducing electromigration effects and hence increasing lifetime of sophisticated semiconductor devices having metallization layers including low-k dielectric materials in combination with copper-based metal lines.
摘要:
During the formation of a complex metallization system, the influence of a manufacturing environment on sensitive barrier/seed material systems may be monitored or controlled by using an appropriate test pattern and applying an appropriate test strategy. For example, actual probe and reference substrates may be prepared and may be processed with and without exposure to the manufacturing environment of interest, thereby enabling an efficient evaluation of one or more parameters of the environment. Furthermore, an “optimized” manufacturing environment may be obtained on the basis of the test strategy disclosed herein.
摘要:
During the formation of a complex metallization system, the influence of a manufacturing environment on sensitive barrier/seed material systems may be monitored or controlled by using an appropriate test pattern and applying an appropriate test strategy. For example, actual probe and reference substrates may be prepared and may be processed with and without exposure to the manufacturing environment of interest, thereby enabling an efficient evaluation of one or more parameters of the environment. Furthermore, an “optimized” manufacturing environment may be obtained on the basis of the test strategy disclosed herein.
摘要:
The introduction of dielectric material of enhanced mechanical stability, such as silicon dioxide or fluorine-doped silicon dioxide, into the via level of a low-k interconnect structure provides an increased overall mechanical stability, especially during the packaging of the device. Consequently, cracking and delamination, as frequently observed in high end low-k interconnect structures, may significantly be reduced, even if organic package substrates are used.
摘要:
The introduction of dielectric material of enhanced mechanical stability, such as silicon dioxide or fluorine-doped silicon dioxide, into the via level of a low-k interconnect structure provides an increased overall mechanical stability, especially during the packaging of the device. Consequently, cracking and delamination, as frequently observed in high end low-k interconnect structures, may significantly be reduced, even if organic package substrates are used.
摘要:
A method for treating a semiconductor device includes dissolving an inert gas species in a wet chemical cleaning solution and treating a material layer of a semiconductor device with the wet chemical cleaning solution in ambient atmosphere. The inert gas species is oversaturated in the wet chemical cleaning solution in the ambient atmosphere.
摘要:
When forming metal lines of the metal zero level, a reduced bottom width and an increased top width may be achieved by using appropriate patterning regimes, for instance using a spacer structure after forming an upper trench portion with a top width, or forming the lower portion of the trenches and subsequently applying a further mask and etch regime in which the top width is implemented. In this manner, metal lines connecting to self-aligned contact bars may be provided so as to exhibit a bottom width of 20 nm and less, while the top width may allow reliable contact to any vias of the metallization system.
摘要:
By forming metallization structures on the basis of an imprint technique, in which via openings and trenches may be commonly formed, a significant reduction of process complexity may be achieved due to the omission of at least one further alignment process as required in conventional process techniques. Furthermore, the flexibility and efficiency of imprint lithography may be increased by providing appropriately designed imprint molds in order to provide via openings and trenches exhibiting an increased fill capability, thereby also improving the performance of the finally obtained metallization structures with respect to reliability, resistance against electromigration and the like.
摘要:
In a replacement gate approach for forming high-k metal gate electrodes in semiconductor devices, a tapered configuration of the gate openings may be accomplished by using a tensile stressed dielectric material provided laterally adjacent to the gate electrode structure. Consequently, superior deposition conditions may be achieved while the tensile stress component may be efficiently used for the strain engineering in one type of transistor. Furthermore, an additional compressively stressed dielectric material may be applied after providing the replacement gate electrode structures.