Abstract:
An inductor design on a wafer level package (WLP) does not need to depopulate the solder balls on the die because the solder balls form part of the inductor. One terminal on the inductor couples to the die, the other terminal couples to a single solder ball on the die, and the remaining solder balls that mechanically contact the inductor remain electrically floating. The resulting device has better inductance, direct current (DC) resistance, board-level reliability (BLR), and quality factor (Q).
Abstract:
Some novel features pertain to a first example provides a semiconductor device that includes a printed circuit board (PCB), asset of solder balls and a die. The PCB includes a first metal layer. The set of solder balls is coupled to the PCB. The die is coupled to the PCB through the set of solder balls. The die includes a second metal layer and a third metal layer. The first metal layer of the PCB, the set of solder balls, the second and third metal layers of the die are configured to operate as an inductor in the semiconductor device. In some implementations, the die further includes a passivation layer. The passivation layer is positioned between the second metal layer and the third metal layer. In some implementations, the second metal layer is positioned between the passivation layer and the set of solder balls.
Abstract:
Some novel features pertain to a first example provides a semiconductor device that includes a printed circuit board (PCB), asset of solder balls and a die. The PCB includes a first metal layer. The set of solder balls is coupled to the PCB. The die is coupled to the PCB through the set of solder balls. The die includes a second metal layer and a third metal layer. The first metal layer of the PCB, the set of solder balls, the second and third metal layers of the die are configured to operate as an inductor in the semiconductor device. In some implementations, the die further includes a passivation layer. The passivation layer is positioned between the second metal layer and the third metal layer. In some implementations, the second metal layer is positioned between the passivation layer and the set of solder balls.
Abstract:
Exemplary embodiments are directed to an amplifier module which may comprise a transmit path including a first amplifier and a second amplifier. The exemplary amplifier module may further include a transformer coupled between the first amplifier and the second amplifier and switchably configured for coupling the first amplifier in series with the second amplifier in a first mode and coupling the first amplifier to bypass the second amplifier in a second mode.
Abstract:
Exemplary embodiments are directed to an amplifier module which may comprise a transmit path including a first amplifier and a second amplifier. The exemplary amplifier module may further include a transformer coupled between the first amplifier and the second amplifier and switchably configured for coupling the first amplifier in series with the second amplifier in a first mode and coupling the first amplifier to bypass the second amplifier in a second mode.