Abstract:
Multigate devices and fabrication methods that mitigate the layout effects are described. In conventional processes to fabricate multigate semiconductor devices such as FinFET devices, long isolation cut masks may be used. This can lead to undesirable layout effects. To mitigate or eliminate the layout effect, fabrication methods are proposed in which the interlayer dielectric (ILD) layer remains intact at the gate cut location during the fabrication process.
Abstract:
A method of producing a FinFET device with fin pitch of less than 20 nm is presented. In accordance with some embodiments, fins are deposited on sidewall spacers, which themselves are deposited on mandrels. The mandrels can be formed by lithographic processes while the fins and sidewall spacers formed by deposition technologies.
Abstract:
A multi-cell transistor includes gate body elements, gate tip elements extending from the gate body elements, and gate extensions extending from the gate tip elements. A patterned metal layer is provided between adjacent gate elements and at least portions of adjacent gate tip elements. Spacers are provided on the sides of each gate body element and each gate tip element to prevent the patterned metal layer from creating a short circuit between adjacent gate tip elements.
Abstract:
A method of producing a FinFET device with fin pitch of less than 20 nm is presented. In accordance with some embodiments, fins are deposited on sidewall spacers, which themselves are deposited on mandrels. The mandrels can be formed by lithographic processes while the fins and sidewall spacers formed by deposition technologies.
Abstract:
Features are fabricated on a semiconductor chip. The features are smaller than the threshold of the lithography used to create the chip. A method includes patterning a first portion of a feature (such as a local interconnect) and a second portion of the feature to be separated by a predetermined distance, such as a line tip to tip space or a line space. The method further includes patterning the first portion with a cut mask to form a first sub-portion (e.g., a contact) and a second sub-portion. A dimension of the first sub-portion is less than a dimension of a second predetermined distance, which may be a line length resolution of a lithographic process having a specified width resolution. A feature of a semiconductor device includes a first portion and a second portion having a dimension less than a lithographic resolution of the first portion.
Abstract:
Multigate devices and fabrication methods that mitigate the layout effects are described. In conventional processes to fabricate multigate semiconductor devices such as FinFET devices, long isolation cut masks may be used. This can lead to undesirable layout effects. To mitigate or eliminate the layout effect, fabrication methods are proposed in which the interlayer dielectric (ILD) layer remains intact at the gate cut location during the fabrication process.
Abstract:
A multigate transistor device such as a fin-shaped field effect transistor (FinFET) is fabricated by applying a self-aligned diffusion break (SADB) mask having an opening positioned to expose an area of at least one portion of at least one gate stripe designated as at least one tie-off gate in the multigate transistor device and removing the tie-off gate through the opening of the SADB mask to isolate transistors adjacent to the tie-off gate.
Abstract:
Aspects of the disclosure are directed to an integrated circuit. The integrated circuit may include a metal contact comprising a first hybrid interconnect structure disposed within a metallization layer, and a metal comprising a second hybrid interconnect structure disposed within the metallization layer, wherein each of the first and the second hybrid interconnect structures has a top portion and a bottom portion, and wherein the top portion of each of the first and the second hybrid interconnect structures comprises a metal element that is suitable for chemical mechanical planarization (CMP) and the bottom portion of each of the first and the second hybrid interconnect structures comprises ruthenium (Ru). The metal element may comprise cobalt (Co).
Abstract:
A semiconductor device includes a gate stack. The semiconductor device also includes a wrap-around contact arranged around and contacting substantially all surface area of a regrown source/drain region of the semiconductor device proximate to the gate stack.