Abstract:
Some implementations provide a semiconductor device that includes a substrate coupled to a die through a thermal compression bonding process. The semiconductor device also includes a trace coupled to the substrate. The trace includes a first conductive material having a first oxidation property. The trace also includes a first surface layer including a second conductive material having a second oxidation property. The second oxidation property is less susceptible to oxidation than the first oxidation property. The first and second conductive materials are configured to provide an electrical path between the die and the substrate. The first surface layer has a thickness that is 0.3 microns (μm) or less.
Abstract:
Sonic implementations pertain to a semiconductor device that includes a packaging substrate, a trace coupled to the packaging substrate, and a solder resist layer that covers part of the trace. The trace includes a first portion having a first width, and a second portion having a second width that is wider than the first width. In some implementations, the second portion having the second width increases the area of the trace coupled to the packaging substrate to reduce the likelihood of the trace peeling from the packaging substrate. In some implementations, the solder resist layer further includes an opening such that the second portion of the trace is exposed. In some implementations, the trace further includes a third portion located between the first portion and second portion of the trace and wherein the third portion of the trace is exposed through an opening in the solder resist layer.
Abstract:
Some exemplary implementations of this disclosure pertain to an integrated circuit package that includes a substrate, a first die and a second die. The substrate includes a first set of traces and a second set of traces. The first set of traces has a first pitch. The second set of traces has a second pitch. The first pitch is less than the second pitch. In some implementations, a pitch of a set of traces defines a center to center distance between two neighboring traces, or bonding pads on a substrate. The first die is coupled to the substrate by a thermal compression bonding process. In some implementations, the first die is coupled to the first set of traces of the substrate. The second die is coupled to the substrate by a reflow bonding process. In some implementations, the second die is coupled to the second set of traces of the substrate.
Abstract:
Some implementations provide a semiconductor device that includes a die, an under bump metallization (UBM) structure coupled to the die, and a barrier layer. The UBM structure has a first oxide property. The barrier layer has a second oxide property that is more resistant to oxide removal from a flux material than the first oxide property of the UBM structure. The barrier layer includes a top portion, a bottom portion and a side portion. The top portion is coupled to the UBM structure, and the side portion is substantially oxidized.
Abstract:
Some implementations provide a semiconductor device that includes a die, an under bump metallization (UBM) structure coupled to the die, and a barrier layer. The UBM structure has a first oxide property. The barrier layer has a second oxide property that is more resistant to oxide removal from a flux material than the first oxide property of the UBM structure. The barrier layer includes a top portion, a bottom portion and a side portion. The top portion is coupled to the UBM structure, and the side portion is substantially oxidized.