摘要:
An assembly comprises a multilayer nitride stack having nitride etch stop layers formed on top of one another, each of the nitride etch stop layers is formed using a film forming process. A method of making the multilayer nitride stack includes placing a substrate in a single wafer deposition chamber and thermally shocking the substrate momentarily prior to deposition. A first nitride etch stop layer is deposited over the substrate. A second nitride etch stop layer is deposited over the first nitride etch stop layer.
摘要:
Embodiments of the invention generally provide a method for depositing silicon-containing films. In one embodiment, a method for depositing silicon-containing material film on a substrate includes flowing a nitrogen and carbon containing chemical into a deposition chamber, flowing a silicon-containing source chemical having silicon-nitrogen bonds into the processing chamber, and heating the substrate disposed in the chamber to a temperature less than about 550 degrees Celsius. In another embodiment, the silicon containing chemical is trisilylamine and the nitrogen and carbon containing chemical is (CH3)3—N.
摘要:
An assembly comprises a multilayer nitride stack having nitride etch stop layers formed on top of one another, each of the nitride etch stop layers is formed using a film forming process. A method of making the multilayer nitride stack includes placing a substrate in a single wafer deposition chamber and thermally shocking the substrate momentarily prior to deposition. A first nitride etch stop layer is deposited over the substrate. A second nitride etch stop layer is deposited over the first nitride etch stop layer.
摘要:
Embodiments of methods for fabricating a silicon nitride stack on a semiconductor substrate are provided herein. In one embodiment, a method for fabricating a silicon nitride stack on a semiconductor substrate includes depositing a base layer comprising silicon nitride on the substrate using a first set of process conditions that selectively control the stress of the base layer; and depositing an upper layer comprising silicon nitride using a second set of process conditions that selectively control at least one of an oxidation resistance and a refractive index of the upper layer.
摘要:
Embodiments of the invention generally provide a method for depositing silicon-containing films. In one embodiment, a method for depositing silicon-containing material film on a substrate includes heating a substrate disposed in a processing chamber to a temperature less than about 550 degrees Celsius; flowing a nitrogen and carbon containing chemical comprising (H3C)—N═N—H into the processing chamber; flowing a silicon-containing source chemical with silicon-nitrogen bonds into the processing chamber; and depositing a silicon and nitrogen containing film on the substrate.
摘要:
Embodiments of methods for fabricating a silicon nitride stack on a semiconductor substrate are provided herein. In one embodiment, a method for fabricating a silicon nitride stack on a semiconductor substrate includes depositing a base layer including silicon nitride on the substrate using a first set of process conditions that selectively control the stress of the base layer; and depositing an upper layer including silicon nitride using a second set of process conditions that selectively control at least one of an oxidation resistance and a refractive index of the upper layer.
摘要:
Embodiments of the invention generally provide a method for depositing silicon-containing films. In one embodiment, a method for depositing silicon-containing material film on a substrate includes flowing a nitrogen and carbon containing chemical into a deposition chamber, flowing a silicon-containing source chemical having silicon-nitrogen bonds into the processing chamber, and heating the substrate disposed in the chamber to a temperature less than about 550 degrees Celsius. In another embodiment, the silicon containing chemical is trisilylamine and the nitrogen and carbon containing chemical is (CH3)3—N.
摘要:
A multiple step chemical vapor deposition process for depositing a tungsten layer on a substrate. A first step of the deposition process includes a nucleation step in which WF.sub.6 and SiH.sub.4 are introduced into a deposition chamber. Next, the flow of WF.sub.6 and SiH.sub.4 are stopped and diborane is introduced into the chamber for between 5-25 seconds. Finally, during a bulk deposition step, the WF.sub.6 is reintroduced into the chamber along with H.sub.2 and B.sub.2 H.sub.6 flows to deposit a tungsten layer on the substrate. In a preferred embodiment, the bulk deposition step also introduces nitrogen into the process gas.
摘要:
A multi-functional physiologically active substance can be obtained from the residue of saccharified malt which has been worthless other than feed for cattle. The isolation of the active substance is performed by an extraction of the residue with water or an aqueous solvent and removal of a low molecular weight fraction from the extract.
摘要:
A multi-functional physiologically active substance can be obtained from the residue of saccharified malt which is worthless other than feed for cattle. The isolation of the active substance is performed by an extraction of the residue with water or an aqueous solvent and removal of a low molecular weight fraction from the extract.