摘要:
Processes and systems for electrolytically processing a microfeature workpiece with a first processing fluid and an anode are described. Microfeature workpieces are electrolytically processed using a first processing fluid, an anode, a second processing fluid, and an anion permeable barrier layer. The anion permeable barrier layer separates the first processing fluid from the second processing fluid while allowing certain anionic species to transfer between the two fluids. The described processes produce deposits over repeated plating cycles that exhibit resistivity values within desired ranges.
摘要:
Processes and systems for electrolytically processing a microfeature workpiece with a first processing fluid and an anode are described. Microfeature workpieces are electrolytically processed using a first processing fluid, an anode, a second processing fluid, and an anion permeable barrier layer. The anion permeable barrier layer separates the first processing fluid from the second processing fluid while allowing certain anionic species to transfer between the two fluids. The described processes produce deposits over repeated plating cycles that exhibit resistivity values within desired ranges.
摘要:
The methods described are directed to processes for producing structures containing metallized features for use in microelectronic workpieces. The processes treat a barrier layer to promote the adhesion between the barrier layer and the metallized feature. Suitable means for promoting adhesion between barrier layers and metallized features include an acid treatment of the barrier layer, an electrolytic treatment of the barrier layer, or deposition of a bonding layer between the barrier layer and metallized feature. The processes described modify an exterior surface of a barrier layer making it more suitable for electrodeposition of metal on a barrier, thus eliminating the need for a PVD or CVD seed layer deposition process. According to the processes described metallized features are formed on the treated barrier layers using processes that employ ion permeable barriers.
摘要:
Processes and systems for electrolytically processing a microfeature workpiece with a first processing fluid and an anode are described. Microfeature workpieces are electrolytically processed using a first processing fluid, an anode, a second processing fluid, and an anion permeable barrier layer. The anion permeable barrier layer separates the first processing fluid from the second processing fluid while allowing certain anionic species to transfer between the two fluids. The described processes produce deposits over repeated plating cycles that exhibit resistivity values within desired ranges.
摘要:
Processes and systems for electrolytically processing a microfeature workpiece with a first processing fluid and an anode are described. Microfeature workpieces are electrolytically processed using a first processing fluid, an anode, a second processing fluid, and a cation permeable barrier layer. The cation permeable barrier layer separates the first processing fluid from the second processing fluid while allowing certain cationic species to transfer between the two fluids. The described processes produce deposits over repeated plating cycles that exhibit deposit properties (e.g., resistivity) within desired ranges.
摘要:
Processes and systems for electrolytically processing a microfeature workpiece with a first processing fluid and an anode are described. Microfeature workpieces are electrolytically processed using a first processing fluid, an anode, a second processing fluid, and a cation permeable barrier layer. The cation permeable barrier layer separates the first processing fluid from the second processing fluid while allowing certain cationic species to transfer between the two fluids. The described processes produce deposits over repeated plating cycles that exhibit deposit properties (e.g., resistivity) within desired ranges.
摘要:
Apparatus and method for thermally controlled processing of microelectronic workpieces with liquids. An apparatus in accordance with and embodiment of the invention includes a process vessel configured to carry a processing liquid, such as an electroless processing liquid. The vessel has a thermally transmissive wall for transferring heat to and/or from the processing liquid within. A heat transfer device, such as a reservoir that receives processing liquid spilling over from the process vessel, transfers heat to or from the processing liquid within the process vessel. The heat transfer device can also transfer heat to or from an internal or external heat source, such as a conduit carrying a heat transfer fluid, or an electrical resistance heater. The interaction between the microelectronic workpiece and the processing liquid can be further controlled by controlling the rate at which the microelectronic workpiece rotates and/or the manner in which the microelectronic workpiece is introduced to and/or withdrawn from the processing liquid.
摘要:
Methods and apparatuses for processing microfeature workpieces are disclosed herein. In one embodiment, a workpiece support carries a workpiece in a processing volume of a processing chamber. A first fluid delivery device directs an unsupported stream of a first fluid into the processing volume. A second fluid delivery device directs an unsupported stream of a second fluid into the processing volume. A first fluid collector receives at least a portion of the first fluid, and a second fluid collector receives at least a portion of the second fluid. Accordingly, embodiments of the apparatus support the use of multiple fluids in a single processing volume to control, restrict, and/or eliminate mixing between the two fluids while reducing and/or eliminating the need for purging and/or rinsing portions of the apparatus. The rotation rate and/or position of the workpiece can also be controlled to control the manner in which the fluids are collected.
摘要:
Techniques for responding to intrusions on a packet switched network include receiving user data at a subscriber-aware gateway server between a network access server and a content server. The user data includes subscriber identifier data that indicates a unique identifier for a particular user, network address data that indicates a network address for a host used by the particular user, NAS data that indicates an identifier for the network access server, flow list data that indicates one or more open data packet flows, and suspicious activity data. The suspicious activity data indicates a value for a property of the open data packet flows that indicates suspicious activity. It is determined whether an intrusion condition is satisfied based on the suspicious activity data. If the intrusion condition is satisfied, then the gateway responds based at least in part on user data other than the network address data.
摘要:
Techniques and systems for server farm load balancing and resource allocation are disclosed. In one embodiment, a method of load balancing can include: arranging servers into service groups; receiving an access request with information related to a differentiation between the service groups; selecting one of the service groups based on a mapping comparison to the information; and selecting one of the servers within the selected service group based on a hardware utilization comparison. The servers can include GPRS (General Packet Radio Service) Gateway Support Node (GGSN) or Remote Authentication Dial In User Service (RADIUS) servers, for example. The information can include an Access Point Name (APN) or Calling Station ID, for example.