摘要:
A semiconductor device (10, 40) is formed to have a well (19) in a substrate (11). The well and the substrate have the same doping type, for example both P-type or both N-type. Low resistance contact regions (26, 27) of a second conductivity type are formed to at least abut the well. A drain (17) is formed within one low resistance contact region. A source (12) is formed in the substrate and laterally displaced from the other low resistance contact region. A buried layer (21, 22, 23) is formed laterally across the well.
摘要:
A method of forming a semiconductor device (10, 40, 45, 50) forms a plurality of P and N stripes (16,17) within a first region (12) that is formed with an opposite conductivity to a substrate (11). The plurality of P and N stripes assist in providing a low on-resistance. A portion (15) of the first region underlies the P and N stripes and protects the semiconductor device from high voltages applied to the drain. A base layer (41) and a cap layer (48) further reduce the on-resistance of the semiconductor device.
摘要:
In one embodiment, a lateral FET structure (30) is formed in a body of semiconductor material (32). The structure (30) includes a plurality non-interdigitated drain regions (39) that are coupled together with a conductive layer (57), and a plurality of source regions (34) that are coupled together with a different conductive layer (51). One or more interlayer dielectrics (53,54) separate the two conductive layers (51,57). The individual source regions (34) are absent small radius fingertip regions.
摘要:
A method of manufacturing a superjunction device includes providing a semiconductor wafer having at least one die. At least one first trench having a first orientation is formed in the at least one die. At least one second trench having a second orientation that is different from the first orientation is formed in the at least one die.
摘要:
A method of manufacturing a semiconductor wafer having at least one device trench extending to a first depth position includes providing a semiconductor substrate having first and second main surfaces and a semiconductor material layer having first and second main surfaces disposed on the first main surface of the semiconductor substrate and determining an etch ratio. The least one device trench and at least one monitor trench are simultaneously formed in the first main surface of the semiconductor material layer. The at least one monitor trench is monitored to detect when it extends to a second depth position. A ratio of the first depth position to the second depth position is generally equal to the etch ratio.
摘要:
In one embodiment, a high voltage semiconductor device is formed with a first dielectric layer and a charge stabilization layer comprising a flowable glass formed over the first dielectric layer.
摘要:
A method of manufacturing a semiconductor device includes providing a semiconductor wafer and forming at least one first trench in the wafer having first and second sidewalls and a first orientation on the wafer. The first sidewall of the at least one first trench is implanted with a dopant of a first conductivity at a first implantation direction. The first sidewall of the at least one first trench is implanted with the dopant of the first conductivity at a second implantation direction. The second implantation direction is orthogonal to the first implantation direction. The first and second implantation directions are non-orthogonal to the first sidewall.
摘要:
Methods for manufacturing trench type semiconductor devices containing thermally unstable refill materials are provided. A disposable material is used to fill the trenches and is subsequently replaced by a thermally sensitive refill material after the high temperature processes are performed. Trench type semiconductor devices manufactured according to method embodiments are also provided.
摘要:
A supercritical fluid chromatography using a column using a column having an optical isomer separating agent containing a polysaccharide derivative capable of optical isomer separation, wherein use is made of a mobile phase containing a supercritical fluid and wherein as the optical isomer separating agent received in the column to conduct optical isomer separation, an optical separating agent containing a polysaccharide derivative capable of optical isomer separation in an amount of 50% by mass or more based on the entirety of the optical isomer separating agent is used to thereby, even in the use of optical isomer separating agent with a multiplicity of identification sites, enable accomplishing excellent separation of optical isomers.
摘要:
A method of manufacturing a superjunction device includes providing a semiconductor wafer having at least one die. At least one first trench having a first orientation is formed in the at least one die. At least one second trench having a second orientation that is different from the first orientation is formed in the at least one die.