Abstract:
A grafting reagent and related method of using the reagent to form a polymeric layer on a support surface, and particularly a porous support surface, in a manner that provides and/or preserves desired properties (such as porosity) of the surface. The reagent and method can be used to provide a thin, conformable, uniform, uncrosslinked coating having desired properties onto the surface of a preformed, and particularly a porous, polymeric substrate. The method includes the steps of a) providing a porous support surface, b) providing a nonpolymeric grafting reagent comprising a photoinitator group, c) providing one or more polymerizable monomers adapted to be contacted with the surface, in the presence of the grafting reagent, and to be polymerized upon activation of the photoinitiator; and d) applying the grafting reagent and monomer(s) to the surface in a manner, and under conditions, suitable to coat the surface with the grafting reagent and to cause the polymerization of monomers to the surface upon activation of the grafting reagent.
Abstract:
A method for coating a rollable device including a device rotator having a pair of rollers and spray nozzle is described. The spray nozzle produces a spray of coating material that is directed towards a gap that is between the rollers of the pair. The majority of any spray not deposited on the rollable device during a coating process passes through the gap between the rollers.
Abstract:
Embodiments of the invention include coated medical devices that can elute one or more bioactive agents within the body, and methods for producing the same. In an embodiment, the invention includes a method of forming a coated medical device including depositing a coated composition onto a medical device having a roughened segment and a smooth segment. In an embodiment, the invention includes a method of forming a coated implantable medical device including depositing a coated composition onto a medical device having a body segment and a piercing segment. In an embodiment, the invention includes a medical device, a coated composition provided on the substrate surface, the composition including a bioactive agent and a polymer. The medical device includes an uncoated component wherein the edge of the coated composition is within 0.5 mm of the uncoated component. In an embodiment, the invention includes a method for disposing a coated composition on a medical device with an ultrasonically atomized spray stream including moving a spray stream in a pattern having a plurality of transverse sweeps and a plurality of longitudinal movements.
Abstract:
The invention relates to methods and apparatuses that reduce problems encountered during coating of a device, such as a medical device having a cylindrical shape. In an embodiment, the invention includes an apparatus including a bi-directional rotation member. In an embodiment, the invention includes a method with a bi-directional indexing movement. In an embodiment, the invention includes a coating solution supply member having a major axis oriented parallel to a gap between rollers on a coating apparatus. In an embodiment, the invention includes a device retaining member. In an embodiment, the invention includes an air nozzle or an air knife. In an embodiment, the invention includes a method including removing a static charge from a small diameter medical device.
Abstract:
The present invention relates to multi-layer coatings and device, articles, and methods regarding the same, for controlled active agent release. Embodiments of the present invention include devices, articles, coatings, and methods relating to an composition including an active agent, a first layer disposed on the composition, and a second layer disposed on the first layer, wherein the second layer is configured to provide controlled release of the active agent through the second layer and the second layer has release characteristics that are distinct from the first layer.
Abstract:
A coating composition for use in coating implantable medical devices to improve their ability to release bioactive agents in vivo. The coating composition is particularly adapted for use with devices that undergo significant flexion and/or expansion in the course of their delivery and/or use, such as stents and catheters. The composition includes the bioactive agent in combination with a mixture of a first polymer component such as poly(butyl methacrylate) and a second polymer component such as poly(ethylene-co-vinyl acetate).
Abstract:
The invention provides methods and compositions for providing biocompatible surfaces to medical articles. In particular the invention provides biocompatible coatings with heparin activity. In some aspects, the biocompatible coatings of the invention are able to release a bioactive agent. The coatings can be formed using biostable or biodegradable polymeric material and photoreactive groups. The invention also provides methods for improving the quality of bioactive agent-containing coatings by performing pre-irradiation of biocompatible coating compositions.
Abstract:
Method and reagent composition for covalent attachment of target molecules, such as nucleic acids, onto the surface of a substrate. The reagent composition includes groups capable of covalently binding to the target molecule. Optionally, the composition can contain photoreactive groups for use in attaching the reagent composition to the surface. The reagent composition can be used to provide activated slides for use in preparing microarrays of nucleic acids.
Abstract:
A coating composition for use in coating implantable medical devices to improve their ability to release bioactive agents in vivo. The coating composition is particularly adapted for use with devices that undergo significant flexion and/or expansion in the course of their delivery and/or use, such as stents and catheters. The composition includes the bioactive agent in combination with a mixture of a first polymer component such as poly(butyl methacrylate) and a second polymer component such as poly(ethylene-co-vinyl acetate).
Abstract:
The present invention relates to methods, devices, and coatings, wherein active agent release is determined by deposition rate of a coating or material. In an embodiment, the invention includes a method for coating a medical device, including identifying active agent elution rates for a coating composition applied to substrates at a plurality of coating deposition rates, selecting one of the coating deposition rates, and applying the coating composition to the medical device at the selected deposition rate. In an embodiment, the invention includes a combination including a medical device and a composition for coating the surface of a medical device with an active agent in a manner that permits the coated surface to release the active agent over time when implanted in vivo.