摘要:
An integrated circuit including a gate electrode is disclosed. One embodiment provides a transistor including a first source/drain electrode and a second source/drain electrode. A channel is arranged between the first and the second source/drain electrode in a semiconductor substrate. A gate electrode is arranged adjacent the channel layer and is electrically insulated from the channel layer. A semiconductor substrate electrode is provided on a rear side. The gate electrode encloses the channel layer at least two opposite sides.
摘要:
Substrate having a first partial substrate with a carrier layer and a second partial substrate, which is bonded to the first partial substrate. The second partial substrate has an insulator layer, which is applied on the carrier layer and has at least two regions each having a different thickness, thereby forming a stepped surface of the insulator layer, and a semiconductor layer, which is applied to the stepped surface of the insulator layer and is formed at least partially epitaxially, wherein the semiconductor layer has a planar surface which is opposite to the stepped surface of the insulator layer. Transistors are formed on the semiconductor layer.
摘要:
A semiconductor memory component comprises at least one memory cell. The memory cell comprises a semiconductor body comprised of a body region, a drain region and a source region, a gate dielectric, and a gate electrode. The body region comprises a first conductivity type and a depression between the source and drain regions, and the source and drain regions comprise a second conductivity type. The gate electrode is arranged at least partly in the depression and is insulated from the body, source, and drain regions by the gate dielectric. The body region further comprises a first continuous region with a first dopant concentration and a second continuous region with a second dopant concentration greater than the first dopant concentration. The first continuous region adjoins the drain region, the depression and the source region, and the second region is arranged below the first region and adjoins the first region.
摘要:
Semiconductor memory having memory cells, each including first and second conductively-doped contact regions and a channel region arranged between the latter, formed in a web-like rib made of semiconductor material and arranged one behind the other in this sequence in the longitudinal direction of the rib. The rib has an essentially rectangular shape with an upper side of the rib and rib side faces lying opposite. A memory layer is configured for programming the memory cell, arranged on the upper side of the rib spaced apart by a first insulator layer, and projects in the normal direction of the one rib side face over one of the rib side faces so that the one rib side face and the upper side of the rib form an edge for injecting charge carriers from the channel region into the memory layer. A gate electrode is spaced apart from the one rib side face by a second insulator layer and from the memory layer by a third insulator layer, electrically insulated from the channel region, and configured to control its electrical conductivity.
摘要:
An integrated circuit arrangement and fabrication method is presented. The integrated circuit arrangement contains a semiconductor and a metal electrode. The contact area between a semiconductor and the electrode is increased without increasing the lateral dimensions using partial regions of the semiconductor and/or of the electrode that extend through a transition layer between the semiconductor and electrode.
摘要:
An electronic device has a plurality of electrically conductive first nanowires, a layer system applied on the first nanowires, and also second nanowires applied on the layer system. The first and second nanowires are arranged skew with respect to one another. The layer system is set up in such a way that charge carriers generated by the nanowires can be stored in the layer system.
摘要:
Memory cell having an auxiliary substrate, on which a first gate insulating layer is formed, a floating gate formed on the first gate insulating layer, an electrically insulating layer formed on the floating gate, a memory gate electrode formed on the electrically insulating layer, a substrate fixed to the memory gate electrode, a second gate insulating layer formed on a part of a surface of the auxiliary substrate, which surface is uncovered by partially removing the auxiliary substrate, a read gate electrode formed on the second gate insulating layer, and two source/drain regions located essentially in a surface region of the remaining material of the auxiliary substrate that is free of the second gate insulating layer and the read gate electrode, a channel region located between the two source/drain regions, wherein the channel region at least partly laterally overlaps the floating gate and the read gate electrode.
摘要:
A nonvolatile memory cell, memory cell arrangement, and method for production of a nonvolatile memory cell is disclosed. The nonvolatile memory cell includes a vertical field-effect transistor (FET). The FET contains a nanoelement arranged as a channel region and an electrically insulating layer. The electrically insulating layer at least partially surrounds the nanoelement and acts as a charge storage layer and as a gate-insulating layer. The electrically insulating layer is arranged such that electrical charge carriers may be selectively introduced into or removed from the electrically insulating layer and the electrical conductivity characteristics of the nanoelement may be influenced by the electrical charge carriers introduced into the electrically insulating layer.
摘要:
The invention relates to a semiconductor memory having a multiplicity of memory cells and a method for forming the memory cells. The semiconductor memory generally includes a semiconductor layer arranged on a substrate surface that includes a normally positioned step between a deeper region and a higher region. The semiconductor memory further includes doped contact regions, channel regions, a trapping layer arranged on a gate oxide layer, and at least one gate electrode. The method for forming the memory cells includes patterning a semiconductor layer to form a deeper semiconductor region and a higher semiconductor region having a step positioned between the regions. The method further includes forming a first oxide layer and a trapping layer, and then removing portions of the trapping layer and the first oxide layer and applying a second oxide layer at least regions of a doped region, the trapping layer, and the step area, and applying a gate electrode to the second oxide layer and doping, at least in regions, of the deeper semiconductor region and the higher semiconductor region to form a deeper contact region and a higher contact region.
摘要:
The invention relates to a semiconductor memory having a multiplicity of memory cells, each of the memory cells having N (e.g., four) vertical memory transistors with trapping layers. Higher contact regions are formed in higher semiconductor regions extending obliquely with respect to the rows and columns of the cell array, the gate electrode generally being led to the step side areas of the higher semiconductor region. A storage density of 1-2F2 per bit can thus be achieved.