摘要:
A method for sorting integrated circuit chips. At least one physical defect is detected in the semiconductor chips. The semiconductor chips are sorted based upon the physical defect.
摘要:
A method and system for dicing a semiconductor wafer providing a structure with greatly reduced backside chipping and cracking, as well as increased die strength. Semiconductor chip structures obtained from wafers diced according to this invention are also encompassed.
摘要:
A semiconductor structure with greatly reduced backside chipping and cracking, as well as increased die strength, accommodation of compact assembly with a carrier such as another semiconductor chip, and resistance to package damage is provided by dicing chips from a wafer in a manner that chamfers edges of the chips. Similar advantages are obtained in multi-chip structure.
摘要:
A method and system for dicing a semiconductor wafer providing a structure with greatly reduced backside chipping and cracking, as well as increased die strength. Semiconductor chip structures obtained from wafers diced according to this invention are also encompassed.
摘要:
Methods for making, and structures so made for producing integrated circuit (IC) chip packages without forming micro solder balls. In one embodiment, a method may include placing a solid grid made from an organic material between the IC chip and the substrate. The grid provides a physical barrier between each of a plurality of Controlled Collapse Chip Connections, and thereby prevents the formation of micro solder balls between them, thus improving chip performance and reliability.
摘要:
Methods for making, and structures so made for producing integrated circuit (IC) chip packages without forming micro solder balls. In one embodiment, a method may include placing a solid grid made from an organic material between the IC chip and the substrate. The grid provides a physical barrier between each of a plurality of Controlled Collapse Chip Connections, and thereby prevents the formation of micro solder balls between them, thus improving chip performance and reliability.
摘要:
A method and apparatus for controlling the thickness of a semiconductor wafer during a backside grinding process are disclosed. The present invention uses optical measurement of the wafer thickness during a backside grinding process to determine the endpoint of the grinding process. Preferred methods entail measuring light transmitted through or reflected by a semiconductor wafer as a function of angle of incidence or of wavelength. This information is then used, through the use of curve fitting techniques or formulas, to determine the thickness of the semiconductor wafer. Furthermore, the present invention may be used to determine if wedging of the semiconductor occurs and, if wedging does occur, to provide leveling information to the thinning apparatus such that a grinding surface can be adjusted to reduce or eliminate wedging.
摘要:
A method for manufacturing a low profile semiconductor chip, includes fabricating a semiconductor device on a semiconductor wafer, grinding, with a grinding tool, a backside of the semiconductor wafer to reduce a thickness thereof, and with the wafer in the grinding tool, providing a support structure on the ground backside of the wafer.
摘要:
A method and apparatus for controlling the thickness of a semiconductor wafer during a backside grinding process are disclosed. The present invention uses optical measurement of the wafer thickness during a backside grinding process to determine the endpoint of the grinding process. Preferred methods entail measuring light transmitted through or reflected by a semiconductor wafer as a function of angle of incidence or of wavelength. This information is then used, through the use of curve fitting techniques or formulas, to determine the thickness of the semiconductor wafer. Furthermore, the present invention may be used to determine if wedging of the semiconductor occurs and, if wedging does occur, to provide leveling information to the thinning apparatus such that a grinding surface can be adjusted to reduce or eliminate wedging.
摘要:
A method and apparatus for controlling the thickness of a semiconductor wafer during a backside grinding process are disclosed. The present invention uses optical measurement of the wafer thickness during a backside grinding process to determine the endpoint of the grinding process. Preferred methods entail measuring light transmitted through or reflected by a semiconductor wafer as a function of angle of incidence or of wavelength. This information is then used, through the use of curve fitting techniques or formulas, to determine the thickness of the semiconductor wafer. Furthermore, the present invention may be used to determine if wedging of the semiconductor occurs and, if wedging does occur, to provide leveling information to the thinning apparatus such that a grinding surface can be adjusted to reduce or eliminate wedging.