摘要:
A method of forming a complementary bipolar transistor device includes the steps of: providing a substrate of semiconductor material including at least two electrically isolated N-type device regions having a generally planar common surface; forming a P-type buried subcollar region in a first of the device regions; forming an N-type buried subcollector region in a second of the device regions; forming an N-type base region in the common surface of the first device region; forming a layer of P-doped polysilicon over the base region in the first device region and over the second device region; patterning the layer of P-doped polysilicon to form an emitter contact generally centered on the base region of the first device region and a generally annular base contact on the second device region; forming a layer of insulating material over the patterned layer of P-doped polysilicon; forming a layer of N-doped polysilicon generally conformally over the device; patterning the layer of N-doped polysilicon to form a base contact generally surrounding the emitter contact on the first device region and an emitter contact generally surrounded by the base contact on the second device region; and heating the device at least once to drive impurities from the base and emitter contacts on the first and second device regions into the device regions whereby to form a vertical PNP transistor in the first device region and a vertical NPN transistor in the second device region.
摘要:
A method is provided for fabricating a silicon on insulator (SOI) device that includes a silicon substrate, a buried insulator layer overlying the silicon substrate, and a monocrystalline silicon layer overlying the buried insulator layer. The method comprises the steps of forming an MOS capacitor coupled between a first voltage bus and a second voltage bus. The MOS capacitor has a gate electrode material forming a first plate of the MOS capacitor and an impurity doped region in the monocrystalline silicon layer beneath the gate electrode material forming a second plate of the MOS capacitor. The first voltage bus is coupled to the first plate of the capacitor and the second voltage bus is coupled to the second plate of the capacitor. The method further includes forming an electrical discharge path coupling the second plate of the MOS capacitor to the silicon substrate.
摘要:
Methods are provided for fabricating an SOI component on a semiconductor layer/insulator/substrate structure including a diode region formed in the substrate. The method comprises, in accordance with one embodiment, forming a shallow trench isolation (STI) region extending through the semiconductor layer to the insulator. A layer of polycrystalline silicon is deposited overlying the STI and the semiconductor layer and is patterned to form a polycrystalline silicon mask comprising at least a first mask region and a second mask region. First and second openings are etched through the STI and the insulator using the mask as an etch mask. N— and P-type ions are implanted into the diode region through the openings to form the anode and cathode of the diode. The anode and cathode are closely spaced and precisely aligned to each other by the polycrystalline silicon mask. Electrical contacts are made to the anode and cathode.
摘要:
A method is provided for fabricating a semiconductor on insulator (SOI) device. The method includes, in one embodiment, providing a monocrystalline silicon substrate having a monocrystalline silicon layer overlying the substrate and separated therefrom by a dielectric layer. A gate electrode material is deposited and patterned to form a gate electrode and a spacer. Impurity determining dopant ions are implanted into the monocrystalline silicon layer using the gate electrode as an ion implant mask to form spaced apart source and drain regions in the monocrystalline silicon layer and into the monocrystalline silicon substrate using the spacer as an ion implant mask to form spaced apart device regions in the monocrystalline substrate. Electrical contacts are then formed that contact the spaced apart device regions.
摘要:
A multiple independent bit Flash memory cell has a gate that includes a first oxide layer, a discontinuous nitride layer on the first oxide layer, a second oxide layer on the discontinuous nitride layer and the first oxide layer, and a polysilicon layer on the second oxide layer. The discontinuous nitride layer has regions residing at different portions of the layer. These portions are separated by the second oxide layer. Thus, with a smaller channel length, charge that otherwise would migrate from one region to the other and/or strongly influence its neighboring it is blocked/impeded by the second oxide layer. In this manner, the potential for charge sharing between the regions is reduced, and a higher density chip multiple independent bit Flash memory cells may be provided.
摘要:
Methods are provided for fabricating an SOI component on a semiconductor layer/insulator/substrate structure including a diode region formed in the substrate. The method comprises, in accordance with one embodiment, forming a shallow trench isolation (STI) region extending through the semiconductor layer to the insulator. A layer of polycrystalline silicon is deposited overlying the STI and the semiconductor layer and is patterned to form a polycrystalline silicon mask comprising at least a first mask region and a second mask region. First and second openings are etched through the STI and the insulator using the mask as an etch mask. N- and P-type ions are implanted into the diode region through the openings to form the anode and cathode of the diode. The anode and cathode are closely spaced and precisely aligned to each other by the polycrystalline silicon mask. Electrical contacts are made to the anode and cathode.
摘要:
A method for forming an integrated circuit with a semiconductor substrate is provided. A gate dielectric is formed on the semiconductor substrate, and a gate is formed on the gate dielectric. Source/drain junctions are formed in the semiconductor substrate adjacent the gate. A facet is formed in at least one of the source/drain junctions of the integrated circuit.
摘要:
A method of forming an integrated circuit with a semiconductor substrate is provided. A gate dielectric is formed on the semiconductor substrate, and a gate is formed on the gate dielectric. A super-saturated doped source silicide metallic layer is formed on the semiconductor substrate adjacent the gate and the gate dielectric. The silicide metallic layer incorporates a substantially uniformly distributed dopant therein in a substantially uniform super-saturated concentration. The silicide metallic layer is reacted with the semiconductor substrate therebeneath to form a salicide layer and outdiffuse the dopant from the salicide layer into the semiconductor substrate therebeneath. The outdiffused dopant in the semiconductor substrate is then activated to form a shallow source/drain junction beneath the salicide layer. An interlayer dielectric is then deposited above the semiconductor substrate, and contacts are formed in the interlayer dielectric to the salicide layer.
摘要:
A method for manufacturing an integrated circuit on a semiconductor wafer is provided. The semiconductor wafer has complete die and partial die areas thereon. Functional circuit patterns are formed in a plurality of the complete die areas. The thermal absorption properties of the semiconductor wafer are tuned by forming differing patterns in a plurality of the partial die areas.
摘要:
An IO buffer is formed having a substrate resistor at a support layer of a semiconductor on insulator substrate. A diode junction is formed between the substrate resistor and portion of the semiconductor on insulator substrate underlying the substrate resistor. In the event of a high-voltage event, current will flow through the diode junction.