摘要:
A 3D object according to the invention comprises substrate layers infiltrated by a hardened material. The 3D object is fabricated by a method comprising the following steps: Position powder on all or part of a substrate layer. Repeat this step for the remaining substrate layers. Stack the substrate layers. Transform the powder into a substance that flows and subsequently hardens into the hardened material. The hardened material solidifies in a spatial pattern that infiltrates positive regions in the substrate layers and does not infiltrate negative regions in the substrate layers. In a preferred embodiment, the substrate is carbon fiber and excess substrate is removed by abrasion.
摘要:
A 3D object according to the invention comprises substrate layers infiltrated by a hardened material. The 3D object is fabricated by a method comprising the following steps: Position powder on all or part of a substrate layer. Repeat this step for the remaining substrate layers. Stack the substrate layers. Transform the powder into a substance that flows and subsequently hardens into the hardened material. The hardened material solidifies in a spatial pattern that infiltrates positive regions in the substrate layers and does not infiltrate negative regions in the substrate layers. In a preferred embodiment, the substrate is carbon fiber and excess substrate is removed by abrasion.
摘要:
A 3D object according to the invention comprises substrate layers infiltrated by a hardened material. The 3D object is fabricated by a method comprising the following steps: Position powder on all or part of a substrate layer. Repeat this step for the remaining substrate layers. Stack the substrate layers. Transform the powder into a substance that flows and subsequently hardens into the hardened material. The hardened material solidifies in a spatial pattern that infiltrates positive regions in the substrate layers and does not infiltrate negative regions in the substrate layers. In a preferred embodiment, the substrate is carbon fiber and excess substrate is removed by abrasion.
摘要:
A 3D object according to the invention comprises substrate layers infiltrated by a hardened material. The 3D object is fabricated by a method comprising the following steps: Position powder on all or part of a substrate layer. Repeat this step for the remaining substrate layers. Stack the substrate layers. Transform the powder into a substance that flows and subsequently hardens into the hardened material. The hardened material solidifies in a spatial pattern that infiltrates positive regions in the substrate layers and does not infiltrate negative regions in the substrate layers. In a preferred embodiment, the substrate is carbon fiber and excess substrate is removed by abrasion.
摘要:
A 3D object according to the invention comprises substrate layers infiltrated by a hardened material. The 3D object is fabricated by a method comprising the following steps: Position powder on all or part of a substrate layer. Repeat this step for the remaining substrate layers. Stack the substrate layers. Transform the powder into a substance that flows and subsequently hardens into the hardened material. The hardened material solidifies in a spatial pattern that infiltrates positive regions in the substrate layers and does not infiltrate negative regions in the substrate layers. In a preferred embodiment, the substrate is carbon fiber and excess substrate is removed by abrasion.
摘要:
A technique for forming nanostructures including introducing a plurality of molecular-size scale and/or nanoscale building blocks to a region near a substrate and simultaneously scanning a pattern on the substrate with an energy beam, wherein the energy beam causes a change in at least one physical property of at least a portion of the building blocks, such that a probability of the portion of the building blocks adhering to the pattern scanned by the energy beam is increased, and wherein the building blocks adhere to the pattern to form the structure. The energy beam and at least a portion of the building blocks may interact by electrostatic interaction to form the structure.
摘要:
A platform for context-aware experimentation includes a housing for one or more sensors for obtaining data pertaining to an on-going experiment, a communications subsystem for transmitting data obtained by the sensors, and a microcontroller for receiving data from the sensors, providing it to the communications subsystem, and possibly controlling the sensors. The housing may be a tube, which may be configured to hold a sample and may have a cap, or a waterproof package, which may have an opening to admit at least part of a sample. The platform may include a power source. The platform may include a computer processor, located outside the housing, for analyzing the data obtained by the sensors, determining the experimental context in which the sensors are operating and/or which experimental step in a protocol is being performed, and/or reminding users of required parameters for the steps in the protocol.
摘要:
A technique for forming nanostructures including introducing a plurality of molecular-size scale and/or nanoscale building blocks to a region near a substrate and simultaneously scanning a pattern on the substrate with an energy beam, wherein the energy beam causes a change in at least one physical property of at least a portion of the building blocks, such that a probability of the portion of the building blocks adhering to the pattern scanned by the energy beam is increased, and wherein the building blocks adhere to the pattern to form the structure. The energy beam and at least a portion of the building blocks may interact by electrostatic interaction to form the structure.
摘要:
Fabrication and arrangement of nanoparticles into one-dimensional linear chains is achieved by successive chemical reactions, each reaction adding one or more nanoparticles by building onto exposed, unprotected linker functionalities. Optionally, protecting groups may be used to control and organize growth. Nanoparticle spheres are functionalized in a controlled manner in order to enable covalent linkages. Functionalization of nanoparticles is accomplished by either ligand exchange or chemical modification of the terminal functional groups of the capping ligand. Nanoparticle chains are obtained by a variety of connectivity modes such as direct coupling, use of linker molecules, and use of linear polymeric templates. In particular, a versatile building block system is obtained through controlled monofunctionalization of nanoparticles.
摘要:
A method for synthesizing a nucleic acid having a desired sequence and length comprises providing a solid support having an immobilized nucleic acid, performing a nucleic acid addition reaction to elongate the immobilized nucleic acid by adding a nucleotide or an oligonucleotide to the nucleic acid, determining whether the nucleotide or the oligonucleotide is added to the nucleic acid by detecting whether there is an increase in electrophoretic force applied to the solid support when an electric field and a magnetic field gradient are applied to the support, wherein the increase in electrophoretic force applied to the support is caused by adding the nucleotide or the oligonucleotide to the nucleic acid, repeating the addition reaction and determination steps if the nucleotide or the oligonucleotide is not added to the nucleic acid, and continuing until the immobilized nucleic acid has a desired sequence and length.