摘要:
A tree decoder organization particularly useful for a three-dimensional memory array or any array having very small array line pitch is configured to provide a plurality of top-level decode nodes, each of which, when selected, simultaneously selects a block of array lines and couples each array line of a selected block to a respective intermediate node. Each of the top-level decode signals has a range of control which is substantially less than the extent of the intermediate nodes. In some embodiments each selected block includes more than one array line on each of at least two memory layers having array lines which exit to one side of the memory array. As a result, the large layout area requirement to generate each top-level decode node is supported by a contiguous block of array lines of the memory array.
摘要:
A passive element memory array preferably biases selected X-lines to an externally received VPP voltage and selected Y-lines to ground. Unselected Y-lines are preferably biased to VPP minus a first offset voltage, and unselected X-lines biased to a second offset voltage (relative to ground). The first and second offset voltages preferably are identical and have a value of about 0.5 to 2 volts. The VPP voltage depends upon the memory cell technology used, and preferably falls within the range of 5 to 20 volts. The area otherwise required for an on-chip VPP generator and saves the power that would be consumed by such a generator. In addition, the operating temperature of the integrated circuit during the programming operation decreases, which further decreases power dissipation. When discharging the memory array, the capacitance between layers is preferably discharged first, then the layers are discharged to ground.
摘要:
In one embodiment, a chip-level architecture is provided comprising a monolithic three-dimensional write-once memory array and at least two of the following system blocks: an Error Checking & Correction Circuit (ECC); a Checkerboard Memory Array containing sub arrays; a Write Controller; a Charge Pump; a Vread Generator; an Oscillator; a Band Gap Reference Generator; and a Page Register/Fault Memory. In another embodiment, a chip-level architecture is provided comprising a monolithic three-dimensional write-once memory array, ECC, and smart write. The monolithic three-dimensional write-once memory array comprises a first conductor, a first memory cell above the first conductor, a second conductor above the first memory cell, and a second memory cell above the second conductor, wherein the second conductor is the only conductor between the first and second memory cells.
摘要:
A memory array decoder organization readily interfaces to array lines having extremely dense pitch, and in particular interfaces to extremely dense array lines of a three-dimensional memory array. In an exemplary embodiment, a multi-headed decoder includes a group of array line driver circuits associated with a single decode node. Each array line driver circuit couples its associated array line through a first device to an associated upper bias node which is generated to convey either a selected bias condition or an unselected bias condition thereon appropriate for the array line. Each array line driver circuit also couples its associated array line through a second device to an associated lower bias node which is generated to convey an unselected bias condition appropriate for the array line. The array line driver circuits for several different decode nodes may be physically arranged in one or more banks.
摘要:
A memory array is subdivided into many sub-arrays which are separately selectable in groups, with each group containing one or more sub-arrays. The various data bits of a data set are physically spread out and mapped into a large number of associated sub-array groups. All the associated sub-array groups are preferably selected during a read cycle to simultaneously read the various bits of the data set, but when writing the data set, a smaller number of sub-array groups are activated during each of several write cycles to simultaneously write only a portion of the data set. Consequently, the read bandwidth remains high and is driven by the number of bits simultaneously read, but the write power is reduced since during each write cycle fewer bits are written. Such a memory array is particularly advantageous with passive element memory cells, such as those having antifuses.
摘要:
A memory array is subdivided into many sub-arrays which are separately selectable in groups, with each group containing one or more sub-arrays. The various data bits of a data set are physically spread out and mapped into a large number of associated sub-array groups. All the associated sub-array groups are preferably selected during a read cycle to simultaneously read the various bits of the data set, but when writing the data set, a smaller number of sub-array groups are activated during each of several write cycles to simultaneously write only a portion of the data set. Consequently, the read bandwidth remains high and is driven by the number of bits simultaneously read, but the write power is reduced since during each write cycle fewer bits are written. Such a memory array is particularly advantageous with passive element memory cells, such as those having antifuses.
摘要:
An electronic system such as a processor or computer system includes circuitry that supports a plurality of clock modes. The clock modes may be used for, for example, testing for critical paths. The clock modes include a variety of clock signal variations that may be utilized such as cycle stretch clock mode, pulse or delay fault mode, and stop mode which provide substantial flexibility in support of a multitude of tests. In one embodiment, a processor of an electronic system includes test clock mode circuitry to support and utilize test clock modes without dependence on an external bypass clock signal operating at processor operational frequencies. Furthermore, the processor implements the test clock modes at full processor operational frequencies. Additionally, a phase-locked loop is utilized to synchronize test mode clock signals with a reference clock signal to, for example, facilitate realistic operational conditions and acquisition of accurate test results. Additionally, in some test clock modes, the phase-locked loop may be synchronized prior to issuing test clock signals to, for example, further support realistic processor operational conditions during, for example, testing operations.
摘要:
Two types of topologically different three-dimensional integrated circuits (for example a 4-layer three-dimensional memory array and an 8-layer three-dimensional memory array) are fabricated from a single set of photo-lithographic masks. In one example, masks 1-5 are used along with other masks to create the first four levels of memory cells in both a 4-layer memory array and an 8-layer memory array. The 8-layer memory array is completed with masks used to form the top four layers of the array. An integrated circuit identification circuit generates an appropriate circuit identification signal for both types of integrated circuits by sensing whether a conductive path across some or all of the device levels of the integrated circuit is continuous, and then by selecting the appropriate circuit identification signal.
摘要:
A differential signal generator for generating a true/complement output signal pair in response to a single-ended input signal is disclosed. The differential signal generator includes an input stage that generates a true/complement intermediate signal pair in response to the input signal, and first and second inverters that generate the output signal pair in response to the intermediate signal pair. The first and second inverters have dynamic beta ratios that change in response to the input signal. This is accomplished by coupling a transistor in the first inverter to ground and decoupling a transistor in the second inverter from ground when the input signal has a high value, and decoupling the transistor in the first inverter from ground and coupling the transistor in the second inverter to ground when the input signal has a low value. As a result, the output signal pair cross each other at a predetermined cross-point although the intermediate signal pair does not.
摘要:
An even bus clock circuit generates logic pulses in response to substantially coincident rising edges of a processor clock and a bus clock over a given range of processor clock to bus clock ratios that includes whole integers and half integers. The even bus clock circuit includes a delay element for receiving the bus clock and generating a delayed bus clock, a first flip-flop for receiving the processor clock at a data input and receiving the delayed bus clock at a clock input, and a second flip-flop for receiving a data output of the first flip-flop at a data input, receiving the processor clock at a clock input and generating a data output that is coupled to an asynchronous reset input of the first flip-flop. The logic pulses are generated at the data output of the first flip-flop and have a pulse width of substantially the same duration as a single cycle of the processor clock.