摘要:
According to one embodiment, there are provided a first shaped pattern in which a plurality of first holes are arranged and of which a width is periodically changed along an arrangement direction of the first holes, a second shaped pattern in which a plurality of second holes are arranged and of which a width is periodically changed along an arrangement direction of the second holes, and slits which are formed along the arrangement direction of the first holes and separate the first shaped pattern and the second shaped pattern.
摘要:
According to one embodiment, a semiconductor device includes interconnects extending from a element formation area to the drawing area, and connected with semiconductor elements in the element formation area and connected with contacts in the drawing area. The interconnects are formed based on a pattern of a (n+1)th second sidewall film matching a pattern of a nth (where n is an integer of 1 or more) first sidewall film on a lateral surface of a sacrificial layer. A first dimension matching an interconnect width of the interconnects and an interconnects interval in the element formation area is (k1/2n)×(λ/NA) or less when an exposure wavelength of an exposure device is λ, a numerical aperture of a lens of the exposure device is NA and a process parameter is k1. A second dimension matching an interconnect interval in the drawing area is greater than the first dimension.
摘要:
Pattern formation simulations are performed based on design layout data subjected to OPC processing with a plurality of process parameters set in process conditions. A worst condition of the process conditions is calculated based on risk points extracted from simulation results. The design layout data or the OPC processing is changed such that when a pattern is formed under the worst condition based on the changed design layout data or the changed OPC processing a number of the risk points or a risk degree of the risk points of the pattern is smaller than the simulation result.
摘要:
A method of fabricating a semiconductor device according to an embodiment includes forming a first pattern having linear parts of a constant line width and a second pattern on a foundation layer, the second pattern including parts close to the linear parts of the first pattern and parts away from the linear parts of the first pattern and constituting closed loop shapes independently of the first pattern or in a state of being connected to the first pattern and carrying out a closed loop cut at the parts of the second pattern away from the linear parts of the first pattern.
摘要:
One embodiment includes: a step of evaluating an amount of flare occurring through a mask at EUV exposure; a step of providing a dummy mask pattern on the mask based on the evaluated result of the amount of flare; and a step of executing a flare correction and an optical proximity correction on a layout pattern. The layout pattern is provided by the EUV exposure through the mask with the dummy mask pattern.
摘要:
A method of fabricating a semiconductor device according to an embodiment includes forming a first pattern having linear parts of a constant line width and a second pattern on a foundation layer, the second pattern including parts close to the linear parts of the first pattern and parts away from the linear parts of the first pattern and constituting closed loop shapes independently of the first pattern or in a state of being connected to the first pattern and carrying out a closed loop cut at the parts of the second pattern away from the linear parts of the first pattern.
摘要:
A pattern dimension calculation method according to one embodiment calculates a taper shape of a mask member used as a mask when a circuit pattern is processed in an upper layer of the circuit pattern formed on a substrate. The method calculates an opening angle facing the mask member from a shape prediction position on the circuit pattern on the basis of the taper shape. The method calculates a dimension of the circuit pattern according to the opening angle formed at the shape prediction position.
摘要:
Pattern formation simulations are performed based on design layout data subjected to OPC processing with a plurality of process parameters set in process conditions. A worst condition of the process conditions is calculated based on risk points extracted from simulation results. The design layout data or the OPC processing is changed such that when a pattern is formed under the worst condition based on the changed design layout data or the changed OPC processing a number of the risk points or a risk degree of the risk points of the pattern is smaller than the simulation result.
摘要:
According to one embodiment, a mask pattern determining method includes a mask-pattern dimension variation amount of a first photomask is derived. Moreover, a correspondence relationship between a target dimension value of an on-substrate test pattern formed by using a second photomask and a dimension allowable variation amount of a mask pattern formed on the second photomask is derived. Then, it is determined whether pattern formation is possible with a pattern dimension that needs to be formed when performing the pattern formation on a substrate by using the first photomask based on the mask-pattern dimension variation amount and the correspondence relationship.
摘要:
An exposure method includes an exposure process for exposing a substrate through a halftone mask with quadrupole illumination to form plural columnar portions that are disposed into a matrix shape in a first direction and a second direction orthogonal to the first direction. The halftone mask includes a first pattern that is extended in the first direction and disposed at predetermined pitches in the second direction; and a second pattern that is extended in the second direction and disposed at predetermined pitches in the first direction such that an intersection portion intersecting the first pattern is formed. The pitches and widths of the patterns on the halftone mask are configured such that zero-order diffracted light intensity and first-order diffracted light intensity, diffracted by the halftone mask, are substantially matched with each other and such that a first-order diffracted light phase is inverted with respect to a zero-order diffracted light phase.