摘要:
An insulating film including characteristics such as low permittivity, a low etching rate and a high insulation property is formed. Supplying a gas containing an element, a carbon-containing gas and a nitrogen-containing gas to a heated substrate in a processing vessel to form a carbonitride layer including the element, and supplying the gas containing the element and an oxygen-containing gas to the heated substrate in the processing vessel to form an oxide layer including the element are alternately repeated to form on the substrate an oxycarbonitride film having the carbonitride layer and the oxide layer alternately stacked therein.
摘要:
An insulating film including characteristics such as low permittivity, a low etching rate and a high insulation property is formed. Supplying a gas containing an element, a carbon-containing gas and a nitrogen-containing gas to a heated substrate in a processing vessel to form a carbonitride layer including the element, and supplying the gas containing the element and an oxygen-containing gas to the heated substrate in the processing vessel to form an oxide layer including the element are alternately repeated to form on the substrate an oxycarbonitride film having the carbonitride layer and the oxide layer alternately stacked therein.
摘要:
A method of manufacturing a semiconductor device is provided, including: forming an oxynitride film having a specific film thickness on a substrate by performing multiple numbers of times a cycle of: forming a specific element-containing layer on the substrate by supplying a source gas containing a specific element into a processing vessel in which the substrate is housed; changing the specific element-containing layer to a nitride layer by supplying a nitrogen-containing gas into the processing vessel; and changing the nitride layer to an oxynitride layer by supplying an oxygen-containing gas and an inert gas into the processing vessel, with this sequence as one cycle, wherein a composition ratio of the oxynitride film having the specific film thickness is controlled by controlling a partial pressure of the oxygen-containing gas in the processing vessel, in changing the nitride layer to the oxynitride layer.
摘要:
An insulating film having features such as a low dielectric constant, a low etching rate and a high insulating property is formed. An oxycarbonitride film having a predetermined thickness is formed on a substrate in a process vessel by performing a cycle a predetermined number of times, wherein the cycle includes steps of: (a) performing a set of steps a predetermined number of times to form a carbonitride layer having a predetermined thickness on the substrate; and (b) supplying an oxygen-containing gas into the process vessel to oxidize the carbonitride layer having the predetermined thickness, thereby forming an oxycarbonitride layer, wherein the set of steps includes: (a-1) supplying a gas containing an element into the process vessel accommodating the substrate under a condition where a CVD reaction is caused to form a layer containing the element on the substrate; (a-2) supplying a carbon-containing gas into the process vessel to form a carbon-containing layer on the layer containing the element, thereby forming a layer including the element and a carbon; and (a-3) supplying a nitrogen-containing gas into the process vessel to nitride the layer including the element and the carbon, thereby forming the carbonitride layer.
摘要:
An insulating film including characteristics such as low permittivity, a low etching rate and a high insulation property is formed. Supplying a gas containing an element, a carbon-containing gas and a nitrogen-containing gas to a heated substrate in a processing vessel to form a carbonitride layer including the element, and supplying the gas containing the element and an oxygen-containing gas to the heated substrate in the processing vessel to form an oxide layer including the element are alternately repeated to form on the substrate an oxycarbonitride film having the carbonitride layer and the oxide layer alternately stacked therein.
摘要:
A method of manufacturing a semiconductor device is provided, including: forming an oxynitride film having a specific film thickness on a substrate by performing multiple numbers of times a cycle of: forming a specific element-containing layer on the substrate by supplying a source gas containing a specific element into a processing vessel in which the substrate is housed; changing the specific element-containing layer to a nitride layer by supplying a nitrogen-containing gas into the processing vessel; and changing the nitride layer to an oxynitride layer by supplying an oxygen-containing gas and an inert gas into the processing vessel, with this sequence as one cycle, wherein a composition ratio of the oxynitride film having the specific film thickness is controlled by controlling a partial pressure of the oxygen-containing gas in the processing vessel, in changing the nitride layer to the oxynitride layer.
摘要:
Provided is a method of manufacturing a semiconductor device. The method includes: loading a substrate into a process vessel; performing a process to form an film on the substrate by alternately repeating: (a) forming a layer containing an element on the substrate by supplying at least two types of source gases into the process vessel, each of the at least two types of source gases containing the element, and (b) changing the layer containing the element by supplying reaction gas into the process vessel, the reaction gas being different from the at least two types of source gases; and unloading the processed substrate from the process vessel.
摘要:
Provided is a method of manufacturing a semiconductor device. The method includes: loading a substrate into a process vessel; performing a process to form an film on the substrate by alternately repeating: (a) forming a layer containing an element on the substrate by supplying at least two types of source gases into the process vessel, each of the at least two types of source gases containing the element, and (b) changing the layer containing the element by supplying reaction gas into the process vessel, the reaction gas being different from the at least two types of source gases; and unloading the processed substrate from the process vessel.
摘要:
Provided is a method of manufacturing a semiconductor device. The method includes: loading a substrate into a process vessel; performing a process to form an oxide, nitride, or oxynitride film on the substrate by alternately repeating: (a) forming a layer containing an element on the substrate by supplying and exhausting first and second source gases containing the element into and from the process vessel; and (b) changing the layer containing the element into an oxide, nitride, or oxynitride layer by supplying and exhausting reaction gas different from the first and second source gases into and from the process vessel; and unloading the substrate from the process vessel. The first source gas is more reactive than the second source gas, and an amount of the first source gas supplied into the process vessel is set to be less than that of the second source gas supplied into the process vessel.
摘要:
A semiconductor device manufacturing method includes: forming a layer on a heated substrate by supplying source gas into a process vessel; changing the layer into an oxide layer by supplying gases containing oxygen and hydrogen to the heated substrate in the process vessel under a pressure lower than atmospheric pressure; and forming an oxide film on the heated substrate by alternately repeating the forming of the layer and the changing of the layer while purging an inside of the process vessel therebetween. In the forming of the layer, the source gas is supplied toward the substrate through a nozzle at a side of the substrate, and inert or hydrogen-containing gas is supplied together with the source gas through the nozzle toward the substrate, such that the velocity of the source gas flowing parallel to the substrate is greater than the velocity of the inert gas flowing parallel to the substrate in the purging of the process vessel.