Abstract:
Embodiments presented provide for a Lead-free metallic barrier coating. In some aspects, a metallic barrier coating for Copper and/or Zinc-rich surfaces for downhole equipment and components is provided.
Abstract:
The disclosure provides for sealing systems including a composite material that includes a thermoplastic lattice structure having interstitial space that is filled with fusible metal. The composite material is formed by additively manufacturing the lattice structure, and then filling the interstitial space with the metal. The composite material may be used to form portions of valves and seals.
Abstract:
A material composition may include one or more polymeric materials. The material composition may also include one or more inorganic particles comprising oxides, carbonates, sulfides, or any combination thereof. Further, the material composition may include one or more metal particles that produce a detectable change in an electrical property or an optical property based on a reaction with at least one of H2O, CO2, or H2S. The one or more inorganic particles and the one or more metal particles may be dispersed within the one or more polymeric materials.
Abstract:
Artificial lift pump components such as couplings are disclosed, all having a body formed from a selected material, the body having an inner diameter and an outer diameter, a first surface treatment introducing carbon, nitrogen, boron into the material to form a first and hard layer, and a second layer defined as an deposited coating to the first layer that is also made of a carbon, nitrogen, or boron and is further characterized as being ceramic like (hard) and having a low-friction.
Abstract:
A method includes fitting an elastomeric component about a perimeter surface of a tool that includes a longitudinal axis, the elastomeric component including carbon-based nanoplatelets in an elastomeric matrix; and tripping the tool into a bore in a geologic formation.
Abstract:
A downhole tool includes a compact heat source including an inner housing having thermal insulation. The compact heat source includes an electrically activated heat source disposed in the inner housing and configured to receive electrical energy to generate first thermal energy. Additionally, the compact heat source includes active metal exothermic materials disposed in the inner housing and configured to receive the first thermal energy from the electrically activated heat source to initiate a first exothermic reaction in the active metal exothermic materials that generates second thermal energy. Further, the compact heat source includes a thermite material disposed in the inner housing. The thermite material is configured to receive the second thermal energy from the first exothermic reaction and ignite a second exothermic reaction of the thermite material to generate third thermal energy. Additionally, the compact heat source is configured to output the third thermal energy out of the inner housing.
Abstract:
An assembly can include a housing that includes opposing ends, a longitudinal axis, an axial length defined between the opposing ends, a maximum transverse dimension that is less than the length and an interior space; circuitry disposed at least in part in the interior space; and a coated electrical conductor electrically coupled to the circuitry where the coated electrical conductor includes an electrical conductor that includes copper and a length defined by opposing ends, a polymeric electrical insulation layer disposed about at least a portion of the length of the electrical conductor, and a barrier layer disposed about at least a portion of the polymeric electrical insulation layer.
Abstract:
A technique includes providing a tool to be deployed in a well to perform a downhole function. The downhole function requires a minimum structural integrity for an element of the tool. The technique includes forming at least part of the element from a ferrous alloy and charging the alloy with hydrogen cause the element to be more prone to cracking than before the hydrogen charging.
Abstract:
Thermally induced graphene sensing circuitry and methods for producing circuits from such thermally induced circuits are disclosed along with applications to hydrocarbon exploration and production, and related subterranean activities. The thermally induced graphene circuitry advantageously brings electrically interconnections otherwise absent on oilfield service tools, enabling components and tools to become smart.
Abstract:
The disclosure provides for anti-scale deposition coatings for use on surface, such as on oilfield parts. The coating includes a first, sublayer of a metal, ceramic, or metal-ceramic composite, which is characterized in having a hardness in excess of 35 HRC. The coating includes a second, top layer over the first layer, that is a polymer. A surface of the first layer may be conditioned to have a roughened or patterned topology for receipt of and adherence with the at least one top layer. The first layer may provide the coating with hardness, and the at least one top layer may provide the coating with low-friction and anti-scale properties.