Abstract:
Proximity of a coil is recognized without increasing a material cost or a manufacturing cost. Provided is a touch panel (1) that includes a plurality of drive electrodes (4) that are formed in a drive layer (2) and a plurality of touch sense electrodes (5) that are formed in a sense layer (3), in which a proximity sense electrode (7) by which proximity of a coil is detected is formed in the sense layer (3).
Abstract:
A technique is provided that reduces dullness of a potential provided to a line such as gate line on an active-matrix substrate to enable driving the line at high speed and, at the same time, reduces the size of the picture frame region. On an active-matrix substrate (20a) are provided gate lines (13G) and source lines. On the active-matrix substrate (20a) are further provided: gate drivers (11) each including a plurality of switching elements, at least one of which is located in a pixel region, for supplying a scan signal to a gate line (13G); and lines (15L1) each for supplying a control signal to the associated gate driver (11). A control signal is supplied by a display control circuit (4) located outside the display region to the gate drivers (11) via the lines (15L1). In response to a control signal supplied, each gate driver (11) drives the gate line (13G) to which it is connected.
Abstract:
Each driving circuit in a shift register includes an output unit, a precharge unit, a boosting unit, a gate voltage discharge unit, a gate line discharge unit, and an internal line netA. The output unit includes a TFT(F) that outputs a selection voltage to a gate line. The precharge unit includes a TFT(B) that outputs a control voltage for causing the TFT in the output unit to operate. The boosting unit boosts up a gate voltage of the TFT in the output unit through a capacitor (Cbst). The gate voltage discharge unit includes a TFT(K) that pulls down this gate voltage during a non-selection period while the gate line is not selected. The gate line discharge unit includes a TFT(L) that outputs a non-selection voltage to the gate line during the non-selection period while the gate line is not selected. The internal line is connected to a gate terminal of the TFT in the output unit, the precharge unit, the gate voltage discharge unit, and the boosting unit. A gate terminal of at least one of the TFTs in the precharge unit, the gate voltage discharge unit, and the gate line discharge unit is connected to an internal line in another driving circuit.
Abstract:
Provided is an active matrix substrate that can protected from static electricity, with the frame region being narrowed. An active matrix substrate (20a) includes a plurality of first lines (GL), a plurality of second lines (SL), and a protection part (50). The first lines are formed in a display region (30). The second lines are formed in the display region, and intersect with the first lines. The protection part protects the active matrix substrate from static electricity. The protection part includes a plurality of first protection circuits (50A), and a conductive unit (50B). The first protection circuits are connected to each of the first lines in the display region. The conductive unit is connected to each of the first protection circuits in the display region. Each of the first protection circuits, according to a potential of the first line to which the first protection circuit is connected, allows the first line and the conductive unit to be conductive with each other.
Abstract:
An active matrix substrate 10 configuring the display panel includes a plurality of gate lines provided in each of pixel segments Snm arrayed in a matrix form, and a plurality of data lines crossing the gate lines. The pixel segments Snm are provided respectively with gate line drive circuitry 13. Each of the gate line drive circuitry 13 is connected to drive control lines 152 and 153 that are supplied with drive control signals Sxm and Sym commanding drive or stop of the gate line drive circuitry. The gate line drive circuitry 13 having received the drive control signal commanding drive scans the gate lines in the pixel segment including the gate line drive circuitry 13.
Abstract:
Provided is a display device in which variation in white balance is suppressed even if wiring lines are arranged in pixels. The display device includes: gate lines; source lines 15S; drive elements connected to the gate lines and the source lines 15S; pixel electrodes connected to the drive elements; and color filters provided corresponding to the pixel electrodes. The pixel electrodes are provided in one-to-one correspondence with subpixels, and a plurality of subpixels 18R, 18G, and 18B constitute one pixel. The display device further includes wiring lines L provided in a pixel region so as to extend along either the gate lines or the source lines. At least some of the wiring lines L are arranged in pixel aperture regions of the subpixels 18. The arrangement pitch P1 of the wiring lines L is larger than the pixel pitch (3×Sa).
Abstract:
A technique is provided that reduces dullness of a potential provided to a line such as gate line on an active-matrix substrate to enable driving the line at high speed and, at the same time, reduces the size of the picture frame region. On an active-matrix substrate (20a) are provided gate lines (13G) and source lines. On the active-matrix substrate (20a) are further provided: gate drivers (11) each including a plurality of switching elements, at least one of which is located in a pixel region, for supplying a scan signal to a gate line (13G); and lines (15L1) each for supplying a control signal to the associated gate driver (11). A control signal is supplied by a display control circuit (4) located outside the display region to the gate drivers (11) via the lines (15L1). In response to a control signal supplied, each gate driver (11) drives the gate line (13G) to which it is connected.
Abstract:
A technique is provided that reduces dullness of a potential provided to a line such as gate line on an active-matrix substrate to enable driving the line at high speed and, at the same time, reduces the size of the picture frame region. On an active-matrix substrate (20a) are provided gate lines (13G) and source lines. On the active-matrix substrate (20a) are further provided: gate drivers (11) each including a plurality of switching elements, at least one of which is located in a pixel region, for supplying a scan signal to a gate line (13G); and lines (15L1) each for supplying a control signal to the associated gate driver (11). A control signal is supplied by a display control circuit (4) located outside the display region to the gate drivers (11) via the lines (15L1). In response to a control signal supplied, each gate driver (11) drives the gate line (13G) to which it is connected.
Abstract:
Provide is a technique that enables to easily arrange driving circuits for driving gate lines within pixels, and to reduce display defects in a vertical stripe pattern. An active matrix substrate includes, in each pixel PIX, a pixel electrode 141, and a pixel switching element 10 that is connected with a gate line 13, a source line 15, and the pixel electrode 141. Driving circuit elements 110 of driving circuits for driving the gate lines 13 are arranged in a light-shielding area BM in a part of the pixels PIX in a display area. The pixel switching elements 10 in a row of the pixels in which the driving circuit element 110 is arranged are provided at non-uniform intervals, and drains of the pixel switching elements 10 in the same row are on the same side with respect to the source lines to which the pixel switching elements 10 are connected.
Abstract:
Provided is a normally black-type liquid crystal display panel that has high productivity. In a pixel (3) contacting a light shielding layer (5), in order for a difference to be small between an area of a light shielding part in a blue picture element (2B) which has a largest area covered with the light shielding layer (5) and an area of a light shielding part in each of a red picture element (2R) and a green picture element (2G), a picture element electrode (4) is divided in each of the red picture element (2R) and the green picture element (2G).