Abstract:
Methods and structures for photovoltaic back contact solar cells having multi-level metallization with at least one aluminum-silicon alloy metallization layer are provided.
Abstract:
A structure and method operable to create a reusable template for detachable thin semiconductor substrates is provided. The template has a shape such that the 3-D shape is substantially retained after each substrate release. Prior art reusable templates may have a tendency to change shape after each subsequent reuse; the present disclosure aims to address this and other deficiencies from the prior art, therefore increasing the reuse life of the template.
Abstract:
A back contact solar cell structure having a light receiving frontside and a metallized backside of on-cell patterned base and emitter metallization electrically connected to base and emitter regions on a back contact solar cell semiconductor substrate. A backplane laminate layer made of resin and fibers and having a coefficient of thermal expansion relatively matched to the back contact solar cell semiconductor substrate is attached to the on-cell base and emitter metallization and to portions of the back contact solar cell semiconductor substrate not covered by the on-cell base and emitter metallization.
Abstract:
Processing equipment for the metallization of a plurality of semiconductor workpieces. A controlled atmospheric non-oxidizing gas region comprises at least two enclosed deposition zones, the controlled atmospheric non-oxidizing gas region is isolated from external oxidizing ambient. A temperature controller adjusts the temperature of the semiconductor workpiece in each of the at least two enclosed deposition zones. Each of the enclosed deposition zones comprising at least one spray gun for the metallization of the semiconductor workpiece. A transport system moves the semiconductor workpiece through the controlled atmospheric non-oxidizing gas region. A batch carrier plate carries the semiconductor workpiece through the controlled atmospheric non-oxidizing gas region. The controlled atmospheric non-oxidizing gas region further comprises a gas-based pre-cleaning zone.
Abstract:
A structure and method operable to create a reusable template for detachable thin semiconductor substrates is provided. The reusable template has a three-dimensional (3-D) surface topography comprising a plurality of raised areas comprising a rounded top and separated by a plurality of depressed areas.
Abstract:
Processing equipment for the metallization of a plurality of workpieces are provided. The equipment comprising a controlled atmospheric region isolated from external oxidizing ambient with at least one deposition zone for the application of a metal layer on a workpiece. A transport system moves the workpiece positioned in a batch carrier plate through the controlled atmospheric region.
Abstract:
Fabrication methods and structures relating to multi-level metallization for solar cells as well as fabrication methods and structures for forming back contact solar cells are provided.
Abstract:
A lamination stack for etching solar cells is provided. At least two solar cell wafers are attached to corresponding backplane sheets which are larger than the solar cell wafers. Release layers larger than the solar cells and smaller than the backplane sheets are positioned on the backplane sheets on the opposite side of the attached solar cell wafers. The backplane sheets are bonded together along the exposed peripheral boundary formed by the release layers.