Abstract:
Laser patterning methods utilize a laser absorbent hard mask in combination with wet etching to form patterned solar cell doped regions to improve cell efficiency by avoiding laser ablation of an underlying semiconductor substrate associated with ablation of an overlying transparent passivation layer.
Abstract:
Back contact back junction solar cell and methods for manufacturing are provided. The back contact back junction solar cell comprises a substrate having a light capturing frontside surface with a passivation layer, a doped base region, and a doped backside emitter region with a polarity opposite the doped base region. A backside passivation layer and patterned reflective layer on the emitter form a light trapping backside mirror. An interdigitated metallization pattern is positioned on the backside of the solar cell and a permanent reinforcement provides support to the cell.
Abstract:
The laser patterning methods utilizing a laser absorbent hard mask in combination with wet etching to form patterned solar cell doped regions which may further improve cell efficiency by completely avoiding laser ablation of an underlying semiconductor substrate associated with ablation of an overlying transparent passivation layer.
Abstract:
Fabrication methods and structures relating to backplanes for back contact solar cells that provide for solar cell substrate reinforcement and electrical interconnects are described. The method comprises depositing an interdigitated pattern of base electrodes and emitter electrodes on a backside surface of a semiconductor substrate, attaching a prepreg backplane to the interdigitated pattern of base electrodes and emitter electrodes, forming holes in the prepreg backplane which provide access to the first layer of electrically conductive metal, and depositing a second layer of electrically conductive metal on the backside surface of the prepreg backplane forming an electrical interconnect with the first layer of electrically conductive metal through the holes in the prepreg backplane.
Abstract:
The present application provides effective and efficient structures and methods for the formation of solar cell base and emitter regions and passivation layers using laser processing. Laser absorbent passivation materials are formed on a solar cell substrate and patterned using laser ablation to form base and emitter regions.
Abstract:
Methods and structures for photovoltaic back contact solar cells having multi-level metallization with at least one aluminum-silicon alloy metallization layer are provided.
Abstract:
The present application provides effective and efficient structures and methods for the formation of solar cell base and emitter regions using laser processing. Laser absorbent passivation materials are formed on a solar cell substrate and patterned using laser ablation to form base and emitter regions.
Abstract:
The present application provides effective and efficient structures and methods for the formation of solar cell base and emitter regions and passivation layers using laser processing. Laser absorbent passivation materials are formed on a solar cell substrate and patterned using laser ablation to form base and emitter regions. Laser damage to the solar cell substrate is removed using an etch.