Abstract:
An electronic device includes a base substrate, and a plurality of battery substrates constructed from mica and being attached to the base substrate. An aggregate area of the base substrate is greater than an aggregate area of the plurality of battery substrates. The electronic device also includes a plurality of active battery layers, each active battery layer being attached to a different respective battery substrate, with each active battery layer having a smaller area than its corresponding battery substrate. A film is disposed over the plurality of active battery layers and sized such that the film extends beyond each active battery layer to contact each battery substrate, and such that the film extends beyond each battery substrate to contact the base substrate.
Abstract:
A battery encapsulation method includes disposing an active battery layer on each of a plurality of battery substrates, with each battery substrate having a greater area than its corresponding active battery layer. The plurality of battery substrates are attached to an interposer having a greater area than an aggregate area of the plurality of battery substrates. The active battery layers are environmentally sealed by disposing a film over the active battery layers sized such that the film extends beyond the active battery layers to contact the battery substrates and the interposer. The interposer is physically along locations where the film contacts the interposer so as to form a plurality of battery units, with each battery unit including one of the battery substrates with the associated active battery layer disposed thereon and being environmentally sealed by the film.
Abstract:
A method for manufacturing semiconductor chips from a semiconductor wafer, including the steps of: fastening, on a first support frame, a second support frame having outer dimensions smaller than the outer dimensions of the first frame and greater than the inner dimensions of the first frame; arranging the wafer on a surface of a film stretched on the second frame; carrying out wafer processing operations by using equipment capable of receiving the first frame; separating the second frame from the first frame and removing the first frame; and carrying out wafer processing operations by using equipment capable of receiving the second frame.
Abstract:
A method for encapsulating electronic components, including the steps of: forming, in a first surface of a semiconductor wafer, electronic components; forming, on the first surface, an interconnection stack including conductive tracks and vias separated by an insulating material; forming first and second bonding pads on the interconnection stack; thinning down the wafer, except at least on its contour; filling the thinned-down region with a first resin layer; arranging at least one first chip on the first bonding pads and forming solder bumps on the second bonding pads; depositing a second resin layer covering the first chips and partially covering the solder bumps; bonding an adhesive strip on the first resin layer; and scribing the structure into individual chips.
Abstract:
A method for manufacturing semiconductor chips from a semiconductor wafer, including the steps of: fastening, on a first support frame, a second support frame having outer dimensions smaller than the outer dimensions of the first frame and greater than the inner dimensions of the first frame; arranging the wafer on a surface of a film stretched on the second frame; carrying out wafer processing operations by using equipment capable of receiving the first frame; separating the second frame from the first frame and removing the first frame; and carrying out wafer processing operations by using equipment capable of receiving the second frame.
Abstract:
A method for forming a microbattery including, on a surface of a first substrate, one active battery element and two contact pads, this method including the steps of: a) forming, on a surface of a second substrate, two contact pads with a spacing compatible with the spacing of the pads of the first substrate; and b) arranging the first substrate on the second substrate so that the surfaces face each other and that the pads of the first substrate at least partially superpose to those of the second substrate, where a portion of the pads of the second substrate is not covered by the first substrate.
Abstract:
An electronic device includes a base substrate with a mica substrate thereon. A top face of the mica substrate has a surface area smaller than a surface area of a top face of the base substrate. An active battery layer is on the mica substrate and has a top face with a surface area smaller than a surface area of a top face of the mica substrate. An adhesive layer is over the active battery layer, mica substrate, and base substrate. An aluminum film layer is over the adhesive layer, and an insulating polyethylene terephthalate (PET) layer is over the aluminum film layer. A battery pad is on the mica substrate adjacent the active battery layer, and a conductive via extends to the battery pad. A conductive pad is connected to the conductive via. The adhesive, aluminum film, and PET have a hole defined therein exposing the conductive pad.
Abstract:
A battery encapsulation method includes disposing an active battery layer on each of a plurality of battery substrates, with each battery substrate having a greater area than its corresponding active battery layer. The plurality of battery substrates are attached to an interposer having a greater area than an aggregate area of the plurality of battery substrates. The active battery layers are environmentally sealed by disposing a film over the active battery layers sized such that the film extends beyond the active battery layers to contact the battery substrates and the interposer. The interposer is physically along locations where the film contacts the interposer so as to form a plurality of battery units, with each battery unit including one of the battery substrates with the associated active battery layer disposed thereon and being environmentally sealed by the film.
Abstract:
A method for forming a microbattery including, on a surface of a first substrate, one active battery element and two contact pads, this method including the steps of: a) forming, on a surface of a second substrate, two contact pads with a spacing compatible with the spacing of the pads of the first substrate; and b) arranging the first substrate on the second substrate so that the surfaces face each other and that the pads of the first substrate at least partially superpose to those of the second substrate, where a portion of the pads of the second substrate is not covered by the first substrate.
Abstract:
A device for cutting a wafer provided with grooves on its upper surface having its lower surface supported by a flexible film secured to a frame. This device includes a system for locating the grooves and for positioning the frame with respect to a cutting system, and setting means for positioning the wafer in front of the locating system so that the located area is at a determined distance from the locating system.