Abstract:
An optical sensor includes a light-emitter device formed in a body of solid-state material with wide band gap having a surface. The light-emitter device includes a cathode region having a first conductivity type and an anode region having a second conductivity type. The anode region extends into the cathode region from the surface of the body. The anode region and the cathode region define a junction, and the cathode region has, near the junction, a peak defectiveness area accommodating vacancies in the crystalline structure due to non-bound ions or atoms of Group IV or VIII of the periodic table, which may include carbon, silicon, helium, argon, or neon. The vacancies are at a higher concentration with respect to mean values of vacancies in the anode region and in the cathode region. For example, the vacancies in the peak defectiveness area have a concentration of at least 1013 atoms/cm−3.
Abstract:
The photodetector is formed in a silicon carbide body formed by a first epitaxial layer of an N type and a second epitaxial layer of a P type. The first and second epitaxial layers are arranged on each other and form a body surface including a projecting portion, a sloped lateral portion, and an edge portion. An insulating edge region extends over the sloped lateral portion and the edge portion. An anode region is formed by the second epitaxial layer and is delimited by the projecting portion and by the sloped lateral portion. The first epitaxial layer forms a cathode region underneath the anode region. A buried region of an N type, with a higher doping level than the first epitaxial layer, extends between the anode and cathode regions, underneath the projecting portion, at a distance from the sloped lateral portion as well as from the edge region.
Abstract:
A light-emitter device comprising: a body of solid-state material; and a P-N junction in the body, including: a cathode region, having N-type conductivity; an anode region, having P-type conductivity, extending in direct contact with the cathode region and defining a light-emitting surface; and a depletion region around an interface between the anode and the cathode regions. The light-emitting surface has at least one indentation that extends towards the depletion region. The depletion region has a peak defectiveness area, housing irregularities in crystal lattice, in correspondence of said at least one indentation. The defectiveness area, which includes point defects, line defects, bulk defects, etc., is generated as a direct consequence of the formation of the indentation by an indenter or nanoindenter system. In the defectiveness area color centers are generated.
Abstract:
An optoelectronic device with a semiconductor body that includes: a bottom cathode structure, formed by a bottom semiconductor material, and having a first type of conductivity; and a buffer region, arranged on the bottom cathode structure and formed by a buffer semiconductor material different from the bottom semiconductor material. The optoelectronic device further includes: a receiver comprising a receiver anode region, which is formed by the bottom semiconductor material, has a second type of conductivity, and extends in the bottom cathode structure; and an emitter, which is arranged on the buffer region and includes a semiconductor junction formed at least in part by a top semiconductor material, different from the bottom semiconductor material.
Abstract:
The photodetector is formed in a silicon carbide body formed by a first epitaxial layer of an N type and a second epitaxial layer of a P type. The first and second epitaxial layers are arranged on each other and form a body surface including a projecting portion, a sloped lateral portion, and an edge portion. An insulating edge region extends over the sloped lateral portion and the edge portion. An anode region is formed by the second epitaxial layer and is delimited by the projecting portion and by the sloped lateral portion. The first epitaxial layer forms a cathode region underneath the anode region. A buried region of an N type, with a higher doping level than the first epitaxial layer, extends between the anode and cathode regions, underneath the projecting portion, at a distance from the sloped lateral portion as well as from the edge region.
Abstract:
A photodiode structure is based on the use of a double junction sensitive to different wavelength bands based on a magnitude of a reverse bias applied to the photodiode. The monolithic integration of a sensor with double functionality in a single chip allows realization of a low cost ultra-compact sensing element in a single packaging useful in many applications which require simultaneous or spatially synchronized detection of optical photons in different spectral regions.
Abstract:
A system for detecting the concentration of metal particles of at least one first material, which includes a detector with: a semiconductor body including a cathode region, delimited by a front surface; and an anode structure made of metal material, which extends over a part of the cathode region, leaving part of the front surface exposed. The anode structure and the part of the cathode region form a first contact of a Schottky type. The exposed part of the front surface can access the metal particles.
Abstract:
A semiconductor device for flame detection, including: a semiconductor body having a first conductivity type conductivity, delimited by a front surface and forming a cathode region; an anode region having a second conductivity type conductivity, which extends within the semiconductor body, starting from the front surface, and forms, together with the cathode region, the junction of a photodiode that detect ultraviolet radiation emitted by the flames; a supporting dielectric region; and a sensitive region, which is arranged on the supporting dielectric region and varies its own resistance as a function of the infrared radiation emitted by the flames.
Abstract:
A photodiode structure is based on the use of a double junction sensitive to different wavelength bands based on a magnitude of a reverse bias applied to the photodiode. The monolithic integration of a sensor with double functionality in a single chip allows realization of a low cost ultra-compact sensing element in a single packaging useful in many applications which require simultaneous or spatially synchronized detection of optical photons in different spectral regions.