Liquid bridge and system
    1.
    发明授权

    公开(公告)号:US10730051B2

    公开(公告)日:2020-08-04

    申请号:US15131546

    申请日:2016-04-18

    Abstract: A bridge (30) comprises a first inlet port (31) at the end of a capillary, a narrower second inlet port (32) which is an end of a capillary, an outlet port (33) which is an end of a capillary, and a chamber (34) for silicone oil. The oil is density-matched with the reactor droplets such that a neutrally buoyant environment is created within the chamber (34). The oil within the chamber is continuously replenished by the oil separating the reactor droplets. This causes the droplets to assume a stable capillary-suspended spherical form upon entering the chamber (34). The spherical shape grows until large enough to span the gap between the ports, forming an axisymmetric liquid bridge. The introduction of a second droplet from the second inlet port (32) causes the formation of an unstable funicular bridge that quickly ruptures from the, finer, second inlet port (32), and the droplets combine at the liquid bridge (30). In another embodiment, a droplet (55) segments into smaller droplets which bridge the gap between the inlet and outlet ports.

    MICROFLUIDIC DROPLET QUEUING NETWORK
    3.
    发明申请
    MICROFLUIDIC DROPLET QUEUING NETWORK 审中-公开
    微型流体排队网络

    公开(公告)号:US20140051604A1

    公开(公告)日:2014-02-20

    申请号:US14057301

    申请日:2013-10-18

    Abstract: A multi-port liquid bridge (1) adds aqueous phase droplets (10) in an enveloping oil phase carrier liquid (11) to a draft channel (4, 6). A chamber (3) links four ports, and it is permanently full of oil (11) when in use. Oil phase is fed in a draft flow from an inlet port (4) and exits through a draft exit port (6) and a compensating flow port (7). The oil carrier and the sample droplets (3) (“aqueous phase”) flow through the inlet port (5) with an equivalent fluid flow subtracted through the compensating port (7). The ports of the bridge (1) are formed by the ends of capillaries held in position in plastics housings. The phases are density matched to create an environment where gravitational forces are negligible. This results in droplets (10) adopting spherical forms when suspended from capillary tube tips. Furthermore, the equality of mass flow is equal to the equality of volume flow. The phase of the inlet flow (from the droplet inlet port (5) and the draft inlet port (4) is used to determine the outlet port (6) flow phase.

    Abstract translation: 多端口液体桥(1)将包含油相载体液体(11)中的水相液滴(10)加入到通风道(4,6)。 室(3)连接四个端口,在使用时永久充满油(11)。 油相在进气口(4)的进料流中进料,并通过排气口(6)和补偿流通口(7)排出。 油载体和样品液滴(“水相”)以相当的流体流通过入口端口(5)流过补偿口(7)。 桥梁(1)的端口由保持在塑料壳体中的位置的毛细管的端部形成。 这些阶段是密度匹配的,以创造引力几乎可忽略的环境。 这导致当从毛细管尖端悬浮时,液滴(10)采用球形。 此外,质量流量的相等性等于体积流量的相等。 入口流(从液滴入口端口5和进气口4)的相位用于确定出口(6)的流动相位。

    Microfluidic droplet queuing network
    7.
    发明授权
    Microfluidic droplet queuing network 有权
    微流控液滴排队网络

    公开(公告)号:US09108177B2

    公开(公告)日:2015-08-18

    申请号:US14057301

    申请日:2013-10-18

    Abstract: A multi-port liquid bridge (1) adds aqueous phase droplets (10) in an enveloping oil phase carrier liquid (11) to a draft channel (4, 6). A chamber (3) links four ports, and it is permanently full of oil (11) when in use. Oil phase is fed in a draft flow from an inlet port (4) and exits through a draft exit port (6) and a compensating flow port (7). The oil carrier and the sample droplets (3) (“aqueous phase”) flow through the inlet port (5) with an equivalent fluid flow subtracted through the compensating port (7). The ports of the bridge (1) are formed by the ends of capillaries held in position in plastics housings. The phases are density matched to create an environment where gravitational forces are negligible. This results in droplets (10) adopting spherical forms when suspended from capillary tube tips. Furthermore, the equality of mass flow is equal to the equality of volume flow. The phase of the inlet flow (from the droplet inlet port (5) and the draft inlet port (4) is used to determine the outlet port (6) flow phase.

    Abstract translation: 多端口液体桥(1)将包含油相载体液体(11)中的水相液滴(10)加入到通风道(4,6)。 室(3)连接四个端口,在使用时永久充满油(11)。 油相在进气口(4)的进料流中进料,并通过排气口(6)和补偿流通口(7)排出。 油载体和样品液滴(“水相”)以相当的流体流通过入口端口(5)流过补偿口(7)。 桥梁(1)的端口由保持在塑料壳体中的位置的毛细管的端部形成。 这些阶段是密度匹配的,以创造引力几乎可忽略的环境。 这导致当从毛细管尖端悬浮时,液滴(10)采用球形。 此外,质量流量的相等性等于体积流量的相等。 入口流(从液滴入口端口5和进气口4)的相位用于确定出口(6)的流动相位。

    Sampling Device
    8.
    发明申请
    Sampling Device 审中-公开
    取样装置

    公开(公告)号:US20140308671A1

    公开(公告)日:2014-10-16

    申请号:US14250776

    申请日:2014-04-11

    Abstract: The present invention generally relates to devices, systems, and methods for acquiring and/or dispensing a sample without introducing a gas into a microfluidic system, such as a liquid bridge system. An exemplary embodiment provides a sampling device including: a sampling member for acquiring or dispensing a sample; and a supply of a fluid that is immiscible with the sample; in which the device is configured to provide a continuous flow of immiscible fluid enveloping the sampling member.

    Abstract translation: 本发明一般涉及用于获取和/或分配样品而不将气体引入诸如液体桥系统的微流体系统中的装置,系统和方法。 示例性实施例提供一种采样装置,包括:用于获取或分配样本的采样部件; 和与样品不混溶的流体供应; 其中所述装置被配置为提供包围所述采样构件的不混溶流体的连续流。

    Liquid Bridge and System
    10.
    发明申请
    Liquid Bridge and System 审中-公开
    液桥和系统

    公开(公告)号:US20160339435A1

    公开(公告)日:2016-11-24

    申请号:US15131546

    申请日:2016-04-18

    Abstract: A bridge (30) comprises a first inlet port (31) at the end of a capillary, a narrower second inlet port (32) which is an end of a capillary, an outlet port (33) which is an end of a capillary, and a chamber (34) for silicone oil. The oil is density-matched with the reactor droplets such that a neutrally buoyant environment is created within the chamber (34). The oil within the chamber is continuously replenished by the oil separating the reactor droplets. This causes the droplets to assume a stable capillary-suspended spherical form upon entering the chamber (34). The spherical shape grows until large enough to span the gap between the ports, forming an axisymmetric liquid bridge. The introduction of a second droplet from the second inlet port (32) causes the formation of an unstable funicular bridge that quickly ruptures from the, finer, second inlet port (32), and the droplets combine at the liquid bridge (30). In another embodiment, a droplet (55) segments into smaller droplets which bridge the gap between the inlet and outlet ports.

    Abstract translation: 桥(30)包括在毛细管端部的第一入口(31),作为毛细管端部的较窄的第二入口(32),作为毛细管的端部的出口(33) 和用于硅油的室(34)。 油与反应器液滴密度匹配,使得在室(34)内产生中性浮力的环境。 室内的油通过分离反应器液滴的油不断补充。 这使得液滴在进入室(34)时呈现稳定的毛细管悬浮球形。 球形增长直到足够大以跨越端口之间的间隙,形成轴对称液桥。 从第二入口端口(32)引入第二液滴导致形成不稳定的索道桥,其从较细的第二入口(32)快速破裂,并且液滴在液体桥(30)处结合。 在另一个实施例中,液滴(55)分段成较小的液滴,桥接入口和出口之间的间隙。

Patent Agency Ranking