Abstract:
A quantum dot, and a quantum dot composite and a device including the same, wherein the quantum dot includes a seed including a first semiconductor nanocrystal, a quantum well layer disposed on the seed and a shell disposed on the quantum well layer, the shell including a second semiconductor nanocrystal, and wherein the quantum dot does not include cadmium, wherein the first semiconductor nanocrystal includes a first zinc chalcogenide, wherein the second semiconductor nanocrystal includes a second zinc chalcogenide, and the quantum well layer includes an alloy semiconductor nanocrystal including indium (In), phosphorus (P), and gallium (Ga), and wherein a bandgap energy of the alloy semiconductor nanocrystal is less than a bandgap energy of the first semiconductor nanocrystal and less than a bandgap energy of the second semiconductor nanocrystal.
Abstract:
A layered structure including a luminescent layer including a quantum dot polymer composite pattern; an inorganic layer disposed on the luminescent layer, the inorganic layer including a metal oxide, a metal nitride, a metal oxynitride, a metal sulfide, or a combination thereof; and an organic layer being disposed between the luminescent layer and the inorganic layer, the organic layer including an organic polymer, a method of producing the same, and a liquid crystal display including the same. The quantum dot polymer composite pattern includes a repeating section including a polymer matrix; and a plurality of quantum dots (e.g., dispersed) in the polymer matrix, the repeating unit including a first section configured to emit light of a first light, and wherein the inorganic layer is disposed on at least a portion of a surface of the repeating section.
Abstract:
A quantum dot including a core including a semiconductor nanocrystal including a Group III-V compound; and a first semiconductor nanocrystal shell disposed on the semiconductor nanocrystal core, the first semiconductor nanocrystal shell including zinc, selenium, and optionally sulfur, and a second semiconductor nanocrystal shell disposed on the first semiconductor nanocrystal shell, the second semiconductor nanocrystal shell including zinc, sulfur, and optionally selenium, wherein the quantum dot does not include cadmium, an emission peak wavelength of the quantum dot is in a range of about 500 nanometers (nm) to about 550 nm, and an ultraviolet-visible absorption spectrum of the quantum dot includes a first exciton absorption peak and a second exciton absorption peak, a composition including the same, a composite, and an electronic device.
Abstract:
A quantum dot including a core including a first semiconductor nanocrystal including a Group III-V compound; and a semiconductor nanocrystal shell disposed on the core, the semiconductor nanocrystal shell including zinc, tellurium, and selenium, wherein the quantum dot does not include cadmium, and the semiconductor nanocrystal shell has a mole ratio of tellurium to selenium of less than about 0.025:1, a composition including the quantum dot, a quantum dot-polymer composite, a patterned layer including the composite, and an electronic device including the patterned layer.
Abstract:
A touch member includes a first touch electrode including a plurality of first sub-detection electrode patterns. The touch member includes a second touch electrode including a plurality of second sub-detection electrode. An electrode pattern connecting portion electrically connects adjacent second sub-detection electrode patterns. An island electrode pattern is disposed in the second touch electrode. A bridge pattern electrically connects a first sub-detection electrode of the first sub-detection electrode patterns to the island electrode pattern. The bridge pattern is formed of a first conductive layer. The first sub-detection electrode patterns, the electrode pattern connecting portion, the second sub-detection electrode patterns, and the island electrode pattern are formed of a second conductive layer. An insulating pattern is disposed between the bridge pattern and a part of the second conductive layer overlapping with the bridge pattern. The insulating pattern does not overlap a part of the bridge pattern.
Abstract:
A quantum dot-polymer composite film includes: a plurality of quantum dots, wherein a quantum dot of the plurality of quantum dots includes an organic ligand on a surface of a the quantum dot; a cured product of a photopolymerizable monomer including a carbon-carbon unsaturated bond; and a residue including a residue of a high-boiling point solvent, a residue of a polyvalent metal compound, or a combination thereof.
Abstract:
An organic light emitting device includes a substrate including a display unit configured to display an image and a peripheral portion surrounding the display unit, a plurality of scan lines on the substrate and extending in a first direction, a plurality of data lines on the substrate and intersecting the scan lines in a second direction, a plurality of pixels at the display unit and connected to the scan lines and the data lines, a repair ring surrounding the display unit, a plurality of driving pads on the peripheral portion and connected to ends of the plurality of data lines, a pair of dummy driving pads on the peripheral portion and connected to ends of the repair ring, and a driving circuit configured to transmit a data signal to the plurality of driving pads and to the pair of dummy driving pads.
Abstract:
A quantum dot including a core including a first semiconductor nanocrystal including a Group III-V compound; and a semiconductor nanocrystal shell disposed on the core, the semiconductor nanocrystal shell including zinc, tellurium, and selenium, wherein the quantum dot does not include cadmium, and the semiconductor nanocrystal shell has a mole ratio of tellurium to selenium of less than about 0.025:1, a composition including the quantum dot, a quantum dot-polymer composite, a patterned layer including the composite, and an electronic device including the patterned layer.
Abstract:
A display device includes a first electrode, a pixel define layer disposed on the first electrode, the pixel define layer including an opening, an organic emission layer disposed on the pixel define layer, the organic emission layer in electrical communication with the first electrode through the opening, a second electrode disposed on the organic emission layer, a light recycle layer disposed on the second electrode, and a color filter layer disposed on the light recycle layer, the color filter layer including a quantum dot, wherein a width of the organic emission layer is longer than a width of the color filter layer.
Abstract:
A composition including a plurality of quantum dots; a binder polymer; a thiol compound having at least two thiol groups; a polyvalent metal compound; a polymerizable monomer having a carbon-carbon double bond; a photoinitiator; and a solvent.