Abstract:
An image sensor in accordance with exemplary embodiments of the inventive concept may include a pixel sensor array which includes an active pixel sensor and an optical black pixel sensor; a first analog to digital converter configured to convert a first sensing signal, which is provided from the active pixel sensor, to a first digital signal; a second analog to digital converter configured to convert a second sensing signal, which is provided from the optical black pixel sensor, to a second digital signal; and an output buffer configured to temporarily store and output the first digital signal and the second digital signal, wherein a plurality of noise characteristics of the second analog to digital converter is different from a plurality of noise characteristics of the first analog to digital converter.
Abstract:
A correlated double sampling (CDS) circuit, an operating method thereof, and an image sensor including the CDS circuit are disclosed. The CDS circuit includes a first comparator configured to operate based on a first bias current, and compare, with a ramp signal, a pixel voltage that is output from a pixel, during a first period and a fourth period during which the pixel operates in a low conversion gain (LCG) mode, a second comparator configured to operate based on a second bias current, and compare, with the ramp signal, the pixel voltage output from the pixel, during a second period and a third period during which the pixel operates in a high conversion gain (HCG) mode, the second period being after the first period, the third period being after the second period, and the fourth period being after the third period.
Abstract:
A correlated double sampling (CDS) circuit, an operating method thereof, and an image sensor including the CDS circuit are disclosed. The CDS circuit includes a first comparator configured to operate based on a first bias current, and compare, with a ramp signal, a pixel voltage that is output from a pixel, during a first period and a fourth period during which the pixel operates in a low conversion gain (LCG) mode, a second comparator configured to operate based on a second bias current, and compare, with the ramp signal, the pixel voltage output from the pixel, during a second period and a third period during which the pixel operates in a high conversion gain (HCG) mode, the second period being after the first period, the third period being after the second period, and the fourth period being after the third period.
Abstract:
Provided is a semiconductor device. The semiconductor device includes a first counter latch circuit configured to receive a count code and to latch the count code according to a comparison result signal; and a second counter latch circuit configured to receive the count code from the first counter latch circuit, and to latch the count code by using a plurality of first latches. The first latches are coupled in series to each other and are configured to operate to sequentially bypass values transmitted to the respective first latches.
Abstract:
An image sensor includes a pixel configured to operate in a high conversion gain (HCG) mode and a low conversion gain (LCG) mode during a readout period, and a correlated double sampling (CDS) circuit configured to generate a comparison signal based on a ramp signal and a pixel voltage received from the pixel, wherein the CDS circuit includes a comparator configured to: receive the pixel voltage through a first input node, receive the ramp signal through a second input node based on an LCG reset signal or an LCG image signal being received as the pixel voltage, and receive the ramp signal through a third input node based on an HCG reset signal or an HCG image signal being received as the pixel voltage; and compare the ramp signal to the pixel voltage, and output the comparison signal corresponding to a comparison result.
Abstract:
A semiconductor device includes: a first semiconductor chip having an upper surface divided into a pixel array region and a connection region, wherein a plurality of pads are disposed in the connection region; and a second semiconductor chip disposed on the first semiconductor chip, wherein the plurality of pads include: a first bonding pad for connection with an external circuit; and a first probing pad adjacent to the first bonding pad and for an electrical die sorting (EDS) test, and wherein the second semiconductor chip includes: a first space overlapping the first bonding pad in a vertical direction and in which at least a portion of an electrostatic discharge protection circuit is formed.
Abstract:
An image sensor includes a pixel sensor outputting an analog sampling signal; a sampling unit comparing the sampling signal and a ramp signal, and outputting a comparison signal that is time-axis length information; and a counter counting a length of the comparison signal based on a clock signal and first and second complement control signals. The counter includes an AND gate ANDing the comparison signal and the clock signal; and a counting unit triggered at a falling edge of the AND gate output to output a count value. The counting unit includes a complement operation controller storing an inverted count value that is an inversion of the count value in response to the first complement control signal, and outputting the inverted count value in response to the second complement control signal; and a D-flip-flop that is set or reset depending on the inverted count value, and outputs the count value.
Abstract:
Provided is an image sensor including a sensor array including a plurality of pixels arranged in rows and columns. The image sensor may include a ramp signal generator which may generate a ramp signal. The intensity of the ramp signal may increase or decrease in response to a ramp enable signal. The image sensor may include an analog-digital converter electrically connected to one of the columns of the pixels. The analog-digital converter may be configured to compare an output signal from the one of the columns of the pixels with the ramp signal, thereby generating time information. The analog-digital converter may be configured to convert the time information to digital information in response to a counter enable signal. An activation of the counter enable signal may be delayed by a predetermined time delay, compared with that of the ramp enable signal.
Abstract:
A solid state imaging device includes a pixel array comprising a plurality of photoelectric conversion devices and an analog to digital conversion (ADC) circuit configured to convert an image signal received from the pixel array to a digital signal responsive to a ramp signal and a gain setting. The solid state imaging device further includes a ramp signal generator circuit configured to generate the ramp signal with a slope that varies responsive to a control signal and a dark level offset compensation circuit configured to generate the control signal responsive to the gain setting and a dark level measurement.
Abstract:
An image sensor includes a pixel configured to operate in a high conversion gain (HCG) mode and a low conversion gain (LCG) mode during a readout period, and a correlated double sampling (CDS) circuit configured to generate a comparison signal based on a ramp signal and a pixel voltage received from the pixel, wherein the CDS circuit includes a comparator configured to: receive the pixel voltage through a first input node, receive the ramp signal through a second input node based on an LCG reset signal or an LCG image signal being received as the pixel voltage, and receive the ramp signal through a third input node based on an HCG reset signal or an HCG image signal being received as the pixel voltage; and compare the ramp signal to the pixel voltage, and output the comparison signal corresponding to a comparison result.