摘要:
There is provided a semiconductor light emitting device including: an n-type semiconductor layer; a p-type semiconductor layer; and an active layer disposed between the n-type semiconductor layer and the p-type semiconductor layer, and including a plurality of alternately stacked quantum barrier layers and quantum well layers, wherein at least a portion of the plurality of quantum well layers has different thicknesses, wherein a thickness of a first quantum well layer most adjacent to the p-type semiconductor layer is less than a thickness of a second quantum well layer adjacent thereto and greater than a thickness of a third quantum well layer, other than the first and second quantum well layers.
摘要:
A semiconductor light emitting device may include: a first conductivity-type semiconductor layer; an active layer disposed on the first conductivity-type semiconductor layer and including a plurality of quantum barrier layers and a plurality of quantum well layers which are alternately stacked; and a second conductivity-type semiconductor layer disposed on the active layer. A quantum barrier layer closest to the second conductivity-type semiconductor layer, among the plurality of quantum barrier layers, may include a first undoped region and a first doped region disposed on the first undoped region and having a thickness greater than or equal to that of the first undoped region. Each of the first undoped region and the first doped region may include a plurality of first unit layers having different energy band gaps, and at least one hole accumulation region.
摘要:
A semiconductor light emitting device includes: n-type and p-type semiconductor layers; and an active layer disposed between the n-type and p-type semiconductor layers. The active layer has a structure in which a plurality of quantum well layers and a plurality of quantum barrier layers are alternately disposed, wherein the plurality of quantum well layers are made of AlxInyGa1-x-yN (0≦x
摘要翻译:半导体发光器件包括:n型和p型半导体层; 以及设置在n型和p型半导体层之间的有源层。 有源层具有多个量子阱层和多个量子势垒层交替设置的结构,其中多个量子阱层由Al x In y Ga 1-x-y N(0 @ x <1,0
摘要:
A semiconductor light emitting device includes: n-type and p-type semiconductor layers; and an active layer disposed between the n-type and p-type semiconductor layers. The active layer has a structure in which a plurality of quantum well layers and a plurality of quantum barrier layers are alternately disposed, wherein the plurality of quantum well layers are made of AlxInyGa1-x-yN (0≦x
摘要翻译:半导体发光器件包括:n型和p型半导体层; 以及设置在n型和p型半导体层之间的有源层。 有源层具有多个量子阱层和多个量子势垒层交替设置的结构,其中多个量子阱层由Al x In y Ga 1-x-y N(0&nlE; x <1,0
摘要:
A semiconductor light emitting device and a method of manufacturing a semiconductor light emitting device, the device including a first conductive semiconductor layer including a plurality of V-shaped recesses; an active layer on the first conductive semiconductor layer along a shape of the plurality of V-shaped recesses; a second conductive semiconductor layer on the active layer; a reflection assisting layer on the second conductive semiconductor layer; and a reflection layer on the reflection assisting layer, wherein a thickness of the second conductive semiconductor layer is 45 nm to 100 nm.
摘要:
There is provided a semiconductor light emitting device. The device includes an n-type semiconductor layer, and a p-type semiconductor layer. The p-type semiconductor layer includes a plurality of first layers and second layers, each containing a p-type impurity and are alternately stacked. The impurity concentrations of the plurality of first layers increase in a direction away from the n-type semiconductor layer. An active layer is disposed between the n-type semiconductor layer and the p-type semiconductor layer.
摘要:
A semiconductor light emitting device includes an n-type semiconductor layer, a border layer disposed on the n-type semiconductor layer, having band gap energy decreasing in a single direction, and represented by an empirical formula AlxInyGa1−x−yN (0≦x≦0.1, 0.01≦y≦0.1), an active layer disposed on the border layer and having a structure in which one or more InGaN layers and one or more GaN layers are alternately stacked, and a p-type semiconductor layer.