Abstract:
A substrate manufacturing facility includes a lower molding plate and an upper molding plate. A resin supply tray provides resin powder to a top surface of the lower molding plate. The lower and upper molding plates may compress a substrate and the resin powder. The upper molding plate has multiple apertures. The apertures are densely formed on a front side of the upper molding plate. The front side of the upper molding plate contacts the substrate. The apertures have diameters smaller than diameters of the resin powder. The substrate manufacturing facility includes a vacuum pump, a ventilator, a conduit, a controller, and valves. The substrate manufacturing facility can adsorb a circuit board using adsorption pressure from the vacuum pump and clean residue from the upper molding using exhaustion pressure from the ventilator.
Abstract:
A tape film lamination apparatus may include a housing, a substrate holder disposed in the housing and positioned to receive a substrate, a film holder disposed on the housing and positioned to support a tape film, and an air removal unit connected to a portion of the housing below the film holder to remove and/or exhaust air from the housing resulting to attach the tape film to the substrate.
Abstract:
A removal apparatus for a semiconductor chip may include a stage configured to support a board on which the semiconductor chip is mounted by bumps, a laser configured to irradiate a laser beam into the board over an area larger than the semiconductor chip, and a picker configured to cause the laser beam to penetrate the semiconductor chip locally and to separate the semiconductor chip from the board. A method of removing a semiconductor chip from a board may include loading the board, on which the semiconductor chip is mounted by bumps, on a stage; irradiating a laser beam into the semiconductor chip to melt the bumps and to separate the semiconductor chip from the board; continuously irradiating the laser beam into the board on which solder pillars, that are residues of the bumps, remain to melt the solder pillars; and removing the solder pillars.
Abstract:
An apparatus for removing a semiconductor chip from a board may include: a laser configured to irradiate the board with a laser beam to heat bumps mounting the semiconductor chip on the board; a picker configured to separate the semiconductor chip from the board; a vacuum portion configured to provide a vacuum to the picker; and an intake. If solder pillars, that are residues of the bumps, are melted by the laser beam, the intake removes the solder pillars using the vacuum provided from the vacuum portion. An apparatus for removing a semiconductor chip from a board may include: a stage configured to support the board on which the semiconductor chip is mounted by bumps; a laser configured to irradiate the board with a laser beam to heat the bumps mounting the semiconductor chip on the board; and a picker configured to separate the semiconductor chip from the board.
Abstract:
A semiconductor device may include a lower semiconductor package including at least one lower semiconductor chip, at least one upper semiconductor package mounted on the lower semiconductor package to include at least one upper semiconductor chip, a molding layer provided between the lower and upper semiconductor packages, and connection solder balls provided in the molding layer to electrically connect the lower and upper semiconductor packages to each other. Each of the connection solder balls may include a portion protruding upward from the molding layer, and there may be no gap between the connection solder balls and the molding layer.