Abstract:
Disclosed herein is an air conditioner in which flow noise of a refrigerant is reduced. An air conditioner includes a compressor configured to compress a refrigerant, an outdoor heat exchanger in which the refrigerant exchanges heat with outside air, an expansion device configured to expand the refrigerant, an indoor heat exchanger in which the refrigerant exchanges heat with indoor air, and a muffler configured to reduce flow noise of the refrigerant flowing into the indoor heat exchanger, wherein the muffler includes a shell including a refrigerant inlet and a refrigerant outlet, a first baffle disposed at one side of an inner part of the shell and including a plurality of first holes, a plurality of pipes inserted into the plurality of first holes and serving as passages through which the refrigerant moves, and a second baffle disposed at the other side of the inner part of the shell and including a plurality of second holes through which the refrigerant passing through the pipe passes.
Abstract:
A light emitting device includes a first semiconductor layer, an active layer, and a second semiconductor layer, and first and second electrodes electrically connected to the first and second semiconductor layers, respectively. The second electrode includes a reflective pad portion, a transparent electrode layer, a reflective finger portion and an electrode pad portion. The reflective pad portion is disposed in a region of an upper surface of the second semiconductor layer. The transparent electrode layer is disposed on the second semiconductor layer and has an opening encompassing the reflective pad portion such that the transparent electrode layer is not in contact with the reflective pad portion. The reflective finger portion extends from the reflective pad portion and has at least a portion thereof disposed on the transparent electrode layer. The electrode pad portion covers the reflective pad portion to be in contact with the transparent electrode layer.
Abstract:
A semiconductor light emitting device includes a first conductivity-type semiconductor layer, an active layer and a second conductivity-type semiconductor layer sequentially stacked on a substrate. A first electrode is disposed on a portion of the first conductivity-type semiconductor layer. A current diffusion layer is disposed on the second conductivity-type semiconductor layer and includes an opening exposing a portion of the second conductivity-type semiconductor layer. A second electrode covers a portion of the current diffusion layer and the exposed portion of the second conductivity-type semiconductor layer, wherein the portion of the current diffusion layer is near the opening.
Abstract:
A display apparatus may include a light source module that may include a substrate having a plurality of chip mounting areas of which each has a connection pad disposed therein, and a plurality of semiconductor light emitting devices electrically coupled to separate connection pads. The display apparatus may include a black matrix on the substrate and having a plurality of holes corresponding to the pattern of chip mounting areas. The semiconductor light emitting devices may be in separate, respective holes to be electrically coupled to separate connection pads. The display apparatus may include unit pixels, where each unit pixel includes multiple adjacent semiconductor light emitting devices. The semiconductor light emitting devices may be removably coupled to separate connection pads, and a semiconductor light emitting device may be interchangeably swapped from a connection pad.
Abstract:
A display apparatus may include a light source module that may include a substrate having a plurality of chip mounting areas of which each has a connection pad disposed therein, and a plurality of semiconductor light emitting devices electrically coupled to separate connection pads. The display apparatus may include a black matrix on the substrate and having a plurality of holes corresponding to the pattern of chip mounting areas. The semiconductor light emitting devices may be in separate, respective holes to be electrically coupled to separate connection pads. The display apparatus may include unit pixels, where each unit pixel includes multiple adjacent semiconductor light emitting devices. The semiconductor light emitting devices may be removably coupled to separate connection pads, and a semiconductor light emitting device may be interchangeably swapped from a connection pad.
Abstract:
A semiconductor light emitting device is provided and includes a protective element including a first lower conductivity-type semiconductor layer and a second lower conductivity-type semiconductor layer. First and second lower electrodes are connected to the first lower conductivity-type semiconductor layer and the second lower conductivity-type semiconductor layer, respectively. A light emitting structure includes a first upper conductivity-type semiconductor layer, an active layer, and a second upper conductivity-type semiconductor layer sequentially formed on the protective element. First and second upper electrodes are connected to the first upper conductivity-type semiconductor layer and the second upper conductivity-type semiconductor layer, respectively.
Abstract:
A semiconductor light emitting device and method of manufacturing the semiconductor light emitting device are provided. The semiconductor light emitting device includes a light emitting structure including a first conductivity type semiconductor layer, an active layer, and a second conductivity type semiconductor layer. The device may also includes a first electrode connected to the first conductivity type semiconductor layer, and a second electrode connected to the second conductivity type semiconductor layer and having a pad region and a finger region extended from the pad region in one direction. The second electrode may include a transparent electrode part positioned on the second conductivity type semiconductor layer and including at least one opening therein, at least one reflective part spaced apart from the transparent electrode part within the opening and disposed in the pad region and the finger region, and a bonding part positioned on at least one portion of the reflective part and including a plurality of bonding finger parts spaced apart from each other in the finger region and a bonding pad part disposed in the pad region.
Abstract:
A semiconductor light emitting device includes a first conductivity-type semiconductor layer, an active layer and a second conductivity-type semiconductor layer sequentially stacked on a substrate. A first electrode is disposed on a portion of the first conductivity-type semiconductor layer. A current diffusion layer is disposed on the second conductivity-type semiconductor layer and includes an opening exposing a portion of the second conductivity-type semiconductor layer. A second electrode covers a portion of the current diffusion layer and the exposed portion of the second conductivity-type semiconductor layer, wherein the portion of the current diffusion layer is near the opening.
Abstract:
An antenna module includes: a base substrate including a rigid region and a flexible region; an antenna member disposed on one surface of the rigid region of the base substrate and including antenna patterns; and a semiconductor package disposed on the other surface of the rigid region of the base substrate and including one or more semiconductor chips.
Abstract:
A semiconductor light emitting device includes a light emitting structure and first and second electrodes. The light emitting structure includes first and second conductivity type semiconductor layers and an active layer interposed therebetween. The first and second electrodes are electrically connected to the first and second conductivity type semiconductor layers. The second electrode includes a current blocking layer, a reflective part disposed on the current blocking layer, a transparent electrode layer disposed on the second conductivity type semiconductor layer, a pad electrode part disposed within a region of the current blocking layer, and at least one finger electrode part disposed at least in part on the transparent electrode layer. The transparent electrode layer can be spaced apart from the reflective part, and have an opening surrounding the reflective part. In some examples, the transparent electrode layer can further be spaced apart from the current blocking layer.