Abstract:
A semiconductor device including source drain stressors is provided. The semiconductor device includes a gate structure including a gate insulating layer and a gate electrode on a semiconductor substrate. Gate spacers may be disposed on sidewalls of the gate structure and a stressor pattern including an impurity region is disposed on a side of the gate structure. The stressor pattern includes a protruded portion having a top surface higher than a bottom surface of the gate structure and a facet in the protruded portion. The facet is slanted at a predetermined angle with respect to an upper surface of the semiconductor substrate and forms a concave portion with one of the gate spacers. A blocking insulating layer may extend conformally on the stressor pattern and the gate spacers and an insulating wing pattern is disposed in the concave portion on the blocking insulating layer.
Abstract:
A semiconductor device including source drain stressors is provided. The semiconductor device includes a gate structure including a gate insulating layer and a gate electrode on a semiconductor substrate. Gate spacers may be disposed on sidewalls of the gate structure and a stressor pattern including an impurity region is disposed on a side of the gate structure. The stressor pattern includes a protruded portion having a top surface higher than a bottom surface of the gate structure and a facet in the protruded portion. The facet is slanted at a predetermined angle with respect to an upper surface of the semiconductor substrate and forms a concave portion with one of the gate spacers. A blocking insulating layer may extend conformally on the stressor pattern and the gate spacers and an insulating wing pattern is disposed in the concave portion on the blocking insulating layer.
Abstract:
A method of forming a pattern includes defining a plurality of patterns, defining a plurality of pitch violating patterns that contact the plurality of patterns and correspond to regions between the patterns, classifying the plurality of pitch violating patterns into a first region and a second region that is adjacent to the first region, selecting one of the first region and the second region, and forming an initial pattern defined as the selected first or second region. The selecting includes performing at least one of i) selecting a region that contact dummy patterns, ii) selecting a region of a same kind as one region, and iii) selecting a region that contacts a concave part of an enclosure from the first region and the second region.
Abstract:
A semiconductor device can include a field insulation layer including a planar major surface extending in first and second orthogonal directions and a protruding portion that protrudes a particular distance from the major surface relative to the first and second orthogonal directions. First and second multi-channel active fins can extend on the field insulation layer, and can be separated from one another by the protruding portion. A conductive layer can extend from an uppermost surface of the protruding portion to cross over the protruding portion between the first and second multi-channel active fins.
Abstract:
A semiconductor device including source drain stressors is provided. The semiconductor device includes a gate structure including a gate insulating layer and a gate electrode on a semiconductor substrate. Gate spacers may be disposed on sidewalls of the gate structure and a stressor pattern including an impurity region is disposed on a side of the gate structure. The stressor pattern includes a protruded portion having a top surface higher than a bottom surface of the gate structure and a facet in the protruded portion. The facet is slanted at a predetermined angle with respect to an upper surface of the semiconductor substrate and forms a concave portion with one of the gate spacers. A blocking insulating layer may extend conformally on the stressor pattern and the gate spacers and an insulating wing pattern is disposed in the concave portion on the blocking insulating layer.
Abstract:
A semiconductor device can include a field insulation layer including a planar major surface extending in first and second orthogonal directions and a protruding portion that protrudes a particular distance from the major surface relative to the first and second orthogonal directions. First and second multi-channel active fins can extend on the field insulation layer, and can be separated from one another by the protruding portion. A conductive layer can extend from an uppermost surface of the protruding portion to cross over the protruding portion between the first and second multi-channel active fins.
Abstract:
A semiconductor device includes a substrate including first to third fins aligned in a first direction, a first trench arranged between the first fin and the second fin, and a second trench arranged between the second fin and the third fin. The semiconductor device further includes a first field insulating film arranged in the first trench, a second field insulating film formed in the second trench, a first dummy gate arranged on the first field insulating film and a second dummy gate at least partly arranged on the second field insulating film. A lower surface of the second field insulating film is arranged to be lower than a lower surface of the first field insulating film.
Abstract:
A method of forming a pattern includes defining a plurality of patterns, defining a plurality of pitch violating patterns that contact the plurality of patterns and correspond to regions between the patterns, classifying the plurality of pitch violating patterns into a first region and a second region that is adjacent to the first region, selecting one of the first region and the second region, and forming an initial pattern defined as the selected first or second region. The selecting includes performing at least one of i) selecting a region that contact dummy patterns, ii) selecting a region of a same kind as one region, and iii) selecting a region that contacts a concave part of an enclosure from the first region and the second region.
Abstract:
A semiconductor device includes a substrate including first to third fins aligned in a first direction, a first trench arranged between the first fin and the second fin, and a second trench arranged between the second fin and the third fin. The semiconductor device further includes a first field insulating film arranged in the first trench, a second field insulating film formed in the second trench, a first dummy gate arranged on the first field insulating film and a second dummy gate at least partly arranged on the second field insulating film. A lower surface of the second field insulating film is arranged to be lower than a lower surface of the first field insulating film.
Abstract:
A semiconductor device includes a substrate having first, second and third fins longitudinally aligned in a first direction. A first trench extends between the first and second fins, and a second trench extends between the second and third fins. A first portion of field insulating material is disposed in the first trench, and a second portion of field insulating material is disposed in the second trench. An upper surface of the second portion of the field insulating material is recessed in the second trench at a level below uppermost surfaces of the second and third fins. A first dummy gate is disposed on an upper surface of the first portion of the field insulating material, and a second dummy gate at least partially extends into the second trench to the upper surface of the second portion of the field insulating material.