Abstract:
A semiconductor device includes a substrate including a first active pattern and a second active pattern, a device isolation layer filling a first trench between the first and second active patterns, the device isolation layer including a silicon oxide layer doped with helium, a helium concentration of the device isolation layer being higher than a helium concentration of the first and second active patterns, and a gate electrode crossing the first and second active patterns.
Abstract:
A semiconductor device is provided including a fin active region on a substrate. The fin active region includes a lower region, a middle region, and an upper region. The middle region has lateral surfaces with a slope less steep than the lateral surfaces of the upper region. An isolation region is on a lateral surface of the lower region of the fin active region. A gate electrode structure is provided. A gate dielectric structure having an oxidation oxide layer and a deposition oxide layer, while having a thickness greater than half a width of the upper region of the fin active region is provided. The deposition oxide layer is between the gate electrode structure and the fin active region and the gate electrode structure and the isolation region, and the oxidation oxide layer is between the fin active region and the deposition oxide layer.
Abstract:
A semiconductor device includes a gate insulating layer disposed on a substrate, a first work function tuning layer disposed on the gate insulating layer, a lower barrier conductive layer on and in contact with the first work function tuning layer, and an upper barrier conductive layer on and in contact with the lower barrier conductive layer. The upper barrier conductive layer and the lower barrier conductive layer include a material in common, e.g., they may each include a titanium nitride (TiN) layer.
Abstract:
A cache memory and a method of managing the same are provided. The method of managing a cache memory includes determining whether a number of bits of a data bandwidth stored in a bank is an integer multiple of a number of bits of unit data in data to be stored, storing first unit data, among the data to be stored, in a first region of a first address in the bank in response to the number of bits of the data bandwidth not being the integer multiple of the number of bits of the unit data, and storing part of second unit data, among the data to be stored, in a second region of the first address.
Abstract:
A semiconductor device includes a substrate including a first active pattern and a second active pattern, a device isolation layer filling a first trench between the first and second active patterns, the device isolation layer including a silicon oxide layer doped with helium, a helium concentration of the device isolation layer being higher than a helium concentration of the first and second active patterns, and a gate electrode crossing the first and second active patterns.
Abstract:
Provided is a method of processing a texture. The method includes acquiring texture position information in a texture image corresponding to pixel position information of pixels constituting a frame, acquiring texture classification information (TCI) representing a similarity between respective texture factors of two or more classified regions in the texture image based on the texture position information, determining an amount of texture data requested from a memory according to the TCI, and reading texture data corresponding to the determined amount of texture data based on the texture position information.
Abstract:
A semiconductor device includes a substrate including a first active pattern and a second active pattern, a device isolation layer filling a first trench between the first and second active patterns, the device isolation layer including a silicon oxide layer doped with helium, a helium concentration of the device isolation layer being higher than a helium concentration of the first and second active patterns, and a gate electrode crossing the first and second active patterns.
Abstract:
A method of manufacturing a semiconductor device includes forming an active pattern protruding from a semiconductor substrate, forming a dummy gate pattern crossing over the active pattern, forming gate spacers on opposite first and second sidewalls of the dummy gate pattern, removing the dummy gate pattern to form a gate region exposing an upper surface and sidewalls of the active pattern between the gate spacers, recessing the upper surface of the active pattern exposed by the gate region to form a channel recess region, forming a channel pattern in the channel recess region by a selective epitaxial growth (SEG) process, and sequentially forming a gate dielectric layer and a gate electrode covering an upper surface and sidewalls of the channel pattern in the gate region. The channel pattern has a lattice constant different from that of the semiconductor substrate.
Abstract:
The inventive concepts provide methods of manufacturing a semiconductor device. The method includes patterning a substrate to form an active pattern, forming a gate pattern intersecting the active pattern, forming a gate spacer on a sidewall of the gate pattern, forming a growth-inhibiting layer covering an upper region of the gate pattern, and forming source/drain electrodes at opposite first and second sides of the gate pattern.
Abstract:
A semiconductor device and method of forming a semiconductor device is disclosed. The method includes forming a first ion-implanted layer having an amorphous state in a substrate; forming an impurity region of a first conductive type in the substrate; forming a semiconductor pattern on the substrate; forming a first doped region of the first conductive type in the semiconductor pattern; and forming a second doped region of a second conductive type contrary to the first conductive type in the semiconductor pattern. The first ion-implanted layer is formed by implanting carbons ions or germanium ions in the substrate.