Abstract:
Embodiments of the present inventive concepts provide a wafer loader having one or more buffer zones to prevent damage to a wafer loaded in the wafer loader. The wafer loader may include a plurality of loading sections that protrude from a main body and are configured to be arranged at various locations along an edge of the wafer. Each of the loading sections may include a groove into which the edge of the wafer may be inserted. The loading section may include first and second protrusions having first and second inner sides, respectively, that face each other to define the groove therebetween. At least one of the first and second inner sides may include a recess to define the buffer zone.
Abstract:
Disclosed are semiconductor devices including through vias and methods of fabricating the same. The methods may include forming a first structure including a metal pattern and a second structure on the first structure. The metal pattern includes an upper surface facing the second structure. The methods may also include etching the second structure to form a via hole exposing the metal pattern, oxidizing a first etch residue in the via hole to convert the first etch residue into an oxidized first etch residue, and removing the oxidized first etch residue. After removing the oxidized first etch residue, the upper surface of the metal pattern may include a first portion that includes a recess and has a first surface roughness and a second portion that is different from the first portion and has a second surface roughness. The first surface roughness may be greater than the second surface roughness.
Abstract:
A semiconductor device including a first structure including a first conductive pattern, the first conductive pattern exposed on an upper portion of the first structure, a mold layer covering the first conductive pattern, a second structure on the mold layer, and a through via penetrating the second structure and the mold layer, the through via electrically connected to the first conductive pattern, the through via including a first via segment in the second structure and a second via segment in the mold layer, the second via segment connected to the first via segment, an upper portion of the second via segment having a first width and a middle portion of the second via segment having a second width greater than the first width may be provided.
Abstract:
A semiconductor device including a first structure including a first conductive pattern, the first conductive pattern exposed on an upper portion of the first structure, a mold layer covering the first conductive pattern, a second structure on the mold layer, and a through via penetrating the second structure and the mold layer, the through via electrically connected to the first conductive pattern, the through via including a first via segment in the second structure and a second via segment in the mold layer, the second via segment connected to the first via segment, an upper portion of the second via segment having a first width and a middle portion of the second via segment having a second width greater than the first width may be provided.
Abstract:
A semiconductor device including a first structure including a first conductive pattern, the first conductive pattern exposed on an upper portion of the first structure, a mold layer covering the first conductive pattern, a second structure on the mold layer, and a through via penetrating the second structure and the mold layer, the through via electrically connected to the first conductive pattern, the through via including a first via segment in the second structure and a second via segment in the mold layer, the second via segment connected to the first via segment, an upper portion of the second via segment having a first width and a middle portion of the second via segment having a second width greater than the first width may be provided.
Abstract:
Disclosed are semiconductor devices including through vias and methods of fabricating the same. The methods may include forming a first structure including a metal pattern and a second structure on the first structure. The metal pattern includes an upper surface facing the second structure. The methods may also include etching the second structure to form a via hole exposing the metal pattern, oxidizing a first etch residue in the via hole to convert the first etch residue into an oxidized first etch residue, and removing the oxidized first etch residue. After removing the oxidized first etch residue, the upper surface of the metal pattern may include a first portion that includes a recess and has a first surface roughness and a second portion that is different from the first portion and has a second surface roughness. The first surface roughness may be greater than the second surface roughness.
Abstract:
A semiconductor device including a first structure including a first conductive pattern, the first conductive pattern exposed on an upper portion of the first structure, a mold layer covering the first conductive pattern, a second structure on the mold layer, and a through via penetrating the second structure and the mold layer, the through via electrically connected to the first conductive pattern, the through via including a first via segment in the second structure and a second via segment in the mold layer, the second via segment connected to the first via segment, an upper portion of the second via segment having a first width and a middle portion of the second via segment having a second width greater than the first width may be provided.
Abstract:
A semiconductor device having a chip stack and an interconnection terminal is provided. The chip stack includes a first semiconductor chip, a second semiconductor chip and a third semiconductor chip stacked on each other. The interconnection terminal is electrically coupled to the chip stack. The first semiconductor chip includes a first front surface and a first backside surface. The second semiconductor chip includes a second front surface, a second backside surface, a second circuit layer and a through-electrode which is electrically coupled to the second circuit layer and penetrates the second semiconductor chip. The third semiconductor chip includes a third front surface, a third backside surface opposite to the third front surface and a third circuit layer adjacent to the third front surface. The first front surface and the second front surface face each other. The third front surface and the second backside surface face each other.