Abstract:
There is provided a semiconductor light emitting device including a substrate having light transmission properties and including a first surface and a second surface opposed to the first surface, a light emitting structure including a first conductivity type semiconductor layer, an active layer, and a second conductivity type semiconductor layer sequentially disposed on the first surface of the substrate, a first electrode and a second electrode connected to the first conductivity type semiconductor layer and the second conductivity type semiconductor layer, respectively, and a window layer disposed on the second surface of the substrate, the window layer being formed of a light transmissive material which is different from a material of the substrate and including inclined side surfaces.
Abstract:
A method for manufacturing a semiconductor device is provided. The method for manufacturing a semiconductor device which uses an apparatus for manufacturing the semiconductor device including: a chamber, a support structure provided inside the chamber, and configured to support a bonding structure that comprises a first substrate structure, a second substrate structure, and a bonding metal layer provided between the first substrate structure and the second substrate structure, and a laser device which is provided above the chamber, the semiconductor device manufacturing method comprising: irradiating a laser beam to the bonding structure using the laser device.
Abstract:
A semiconductor light emitting device includes: a first conductive semiconductor layer including first and second areas; an active layer disposed on the second area; a second conductive semiconductor layer disposed on the active layer; first and second electrode branches disposed on the first and second conductive semiconductor layers, respectively; a first electrode pad electrically connected to the first electrode branch and disposed on the first electrode branch; and a second electrode pad electrically connected to the second electrode branch and disposed on the second electrode branch.
Abstract:
In one example embodiment, a semiconductor light emitting device includes a light emitting structure including a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer. The second conductivity-type semiconductor layer and the active layer having at least one contact hole exposing a region of the first conductivity-type semiconductor layer. The semiconductor light emitting device further includes at least one columnar structure disposed in the exposed region of the first conductivity-type semiconductor layer within the at least one contact hole. The semiconductor light emitting device further includes a first electrode disposed on the exposed region of the first conductivity-type semiconductor layer in which the at least one columnar structure is disposed, the first electrode being connected to the first conductivity-type semiconductor layer. The semiconductor light emitting device further includes a second electrode connected to the second conductivity-type semiconductor layer.
Abstract:
A semiconductor light emitting device includes a conductive substrate, a light emitting laminate including a second conductivity type semiconductor layer, an active layer, and a first conductivity type semiconductor layer stacked on the conductive substrate, a first electrode layer electrically connected to the first conductivity type semiconductor layer, a second electrode layer between the conductive substrate and the second conductivity type semiconductor layer, the second electrode layer being electrically connected to the second conductivity type semiconductor layer, and a passivation layer between the active layer and the second electrode layer, the passivation layer covering at least a lateral surface of the active layer of the light emitting laminate.
Abstract:
A semiconductor light emitting device includes a semiconductor laminate including first and second conductivity-type semiconductor layers and an active layer formed therebetween, and divided into first and second regions. At least one contact hole is formed on the first region and connected to a portion of the first conductivity-type semiconductor layer through the active layer. A first electrode is formed to be connected to the first conductivity-type semiconductor layer of the first region and connected to the second conductivity-type semiconductor layer of the second region through the at least one contact hole. A second electrode is formed and connected to the second conductivity-type semiconductor layer of the first region. First and second electrode pads and a support substrate are formed.