Abstract:
Semiconductor light-emitting devices, and semiconductor light-emitting packages, include at least one light-emitting structure including a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer sequentially stacked on a substrate, the at least one light-emitting structure having a first region and a second region delimiting the first region. The light-emitting device includes a groove in the second region, and the groove is adjacent to an edge of the substrate and extends parallel to the edge of the substrate.
Abstract:
A semiconductor light emitting device includes a multi-region solder pad. The semiconductor light emitting device includes a light emitting diode (LED) chip having a first surface on which first and second electrodes are disposed and a second surface opposing the first surface. A passivation layer is disposed on a surface of the LED chip such that bonding regions of the first and second electrodes are exposed through the passivation layer. A solder pad is disposed in each respective bonding region and has a plurality of separated regions. A solder bump is disposed in each respective bonding region and covers the plurality of separated regions of the respective solder pad. In the semiconductor light emitting device, separation between the solder pad and the solder bump may thereby be effectively prevented by ensuring that an interface between a solder pad and a solder bump is not entirely damaged.
Abstract:
In example embodiments, a semiconductor light emitting device includes a light emitting structure, first and second insulating layers, a barrier metal layer, and an electrode. The light emitting structure includes an active layer between a first and second conductivity-type semiconductor layer. The first insulating layer is on the light emitting structure and defines a first one and a second one of first openings that respectively expose the first and second conductivity-type semiconductor layers. The barrier metal layer is on the first insulating layer and electrically connected to the first and second conductivity-type semiconductor layers through the first and second one of the first openings. The second insulating layer is on the barrier metal layer and defines a second opening that partially exposes the barrier metal layer. The electrode is on the barrier metal layer and electrically connected to the first and second conductivity-type semiconductor layers through the barrier metal layer.
Abstract:
There is provided a semiconductor light emitting device including a substrate having light transmission properties and including a first surface and a second surface opposed to the first surface, a light emitting structure including a first conductivity type semiconductor layer, an active layer, and a second conductivity type semiconductor layer sequentially disposed on the first surface of the substrate, a first electrode and a second electrode connected to the first conductivity type semiconductor layer and the second conductivity type semiconductor layer, respectively, and a window layer disposed on the second surface of the substrate, the window layer being formed of a light transmissive material which is different from a material of the substrate and including inclined side surfaces.
Abstract:
A method of forming a metal bonding layer includes forming a first bonding metal layer and a second bonding metal layer on surfaces of first and second bonding target objects, respectively. The second bonding target object is disposed on the first bonding target object to allow the first and second bonding metal layers to face each other. A eutectic metal bonding layer is formed through a reaction between the first and second bonding metal layers. At least one of the first and second bonding metal layers includes a reaction delaying layer formed of a metal for delaying the reaction between the first and second bonding metal layers.
Abstract:
A light emitting device package includes: a package board including a first electrode structure and a second electrode structure; and a light emitting device mounted on the package board and configured to emit light, the light emitting device including: light emitting structures provided on a growth substrate, electrically connected in series, and including an input terminal and an output terminal; a first solder pad and a second solder pad electrically connected to the input terminal and the output terminal, respectively, and in contact with the first and second electrode structures; and dummy solder pads provided on the light emitting structures and electrically insulated from the light emitting structures.
Abstract:
In one example embodiment, a semiconductor light emitting device includes a light emitting structure including a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer. The second conductivity-type semiconductor layer and the active layer having at least one contact hole exposing a region of the first conductivity-type semiconductor layer. The semiconductor light emitting device further includes at least one columnar structure disposed in the exposed region of the first conductivity-type semiconductor layer within the at least one contact hole. The semiconductor light emitting device further includes a first electrode disposed on the exposed region of the first conductivity-type semiconductor layer in which the at least one columnar structure is disposed, the first electrode being connected to the first conductivity-type semiconductor layer. The semiconductor light emitting device further includes a second electrode connected to the second conductivity-type semiconductor layer.
Abstract:
There is provided a semiconductor light emitting device, a method of manufacturing the same, and a semiconductor light emitting device package using the same. A semiconductor light emitting device having a first conductivity type semiconductor layer, an active layer, a second conductivity type semiconductor layer, a second electrode layer, and insulating layer, a first electrode layer, and a conductive substrate sequentially laminated, wherein the second electrode layer has an exposed area at the interface between the second electrode layer and the second conductivity type semiconductor layer, and the first electrode layer comprises at least one contact hole electrically connected to the first conductivity type semiconductor layer, electrically insulated from the second conductivity type semiconductor layer and the active layer, and extending from one surface of the first electrode layer to at least part of the first conductivity type semiconductor layer.