Abstract:
An apparatus for estimating biological information of a user may include a light source configured to emit light to an object of the user; an image sensor comprising a pixel array, and configured to acquire successive image frames by detecting light scattered or reflected from the object of the user; and a processor configured to: select a predetermined number of pixel-rows from among pixel-rows of the image sensor, detect signal intensities in the predetermined number of pixel-rows for each image frame of the successive image frames, correct the signal intensities, combine the signal intensities for each image frame of the successive image frames based on correcting the signal intensities, acquire a photoplethysmogram (PPG) signal based on combining the signal intensities, and estimate the biological information of the user based on the PPG signal.
Abstract:
A semiconductor memory device includes a cell region element separation film that is on a substrate and includes first and second cell region side walls; an active pattern that is on the substrate; a word line that is on the first side wall of the active pattern; a back gate electrode that is on the second side wall of the active pattern; a bit line that is electrically connected to the first side of the active pattern; and a data storage pattern that is electrically connected to the second side of the active pattern, where the word line includes an electrode part and a plug connecting part, and where the plug connecting part of the word line includes a first connecting extending part and a second connecting extending part.
Abstract:
A three-dimensional semiconductor memory device includes first semiconductor patterns, which are vertically spaced apart from each other on a substrate, each of which includes first and second end portions spaced apart from each other, and first and second side surfaces spaced apart from each other to connect the first and second end portions, first and second source/drain regions disposed in each of the first semiconductor patterns and adjacent to the first and second end portions, respectively, a channel region in each of the first semiconductor patterns and between the first and second source/drain regions, a first word line adjacent to the first side surfaces and the channel regions and vertically extended, and a gate insulating layer interposed between the first word line and the first side surfaces. The gate insulating layer may be extended to be interposed between the first source/drain regions.
Abstract:
Context recognition methods and apparatus are provided for an application processor and a micro control unit. It is determined whether an operation switch condition for switching to a sleep mode is satisfied. A request for execution of a context recognition function is sent to a micro control unit, when the operation switch condition is satisfied. The application processor switches to the sleep mode, when the context recognition function is executed by the micro control unit. The micro control unit collects sensor data at previously stored time intervals, and previously stored state information is updated based on the sensor data.
Abstract:
Context recognition methods and apparatus are provided for an application processor and a micro control unit. It is determined whether an operation switch condition for switching to a sleep mode is satisfied. A request for execution of a context recognition function is sent to a micro control unit, when the operation switch condition is satisfied. The application processor switches to the sleep mode, when the context recognition function is executed by the micro control unit. The micro control unit collects sensor data at previously stored time intervals, and previously stored state information is updated based on the sensor data.
Abstract:
Context recognition methods and apparatus are provided for an application processor and a micro control unit. It is determined whether an operation switch condition for switching to a sleep mode is satisfied. A request for execution of a context recognition function is sent to a micro control unit, when the operation switch condition is satisfied. The application processor switches to the sleep mode, when the context recognition function is executed by the micro control unit. The micro control unit collects sensor data at previously stored time intervals, and previously stored state information is updated based on the sensor data.
Abstract:
A method includes forming hard mask patterns by depositing a support mask layer, a polycrystalline silicon layer, and a hard mask layer on a substrate and etching the hard mask layer, forming pre-polycrystalline silicon patterns by etching the polycrystalline silicon layer using the hard mask patterns as an etch mask, oxidizing side surfaces of the pre-polycrystalline silicon patterns to form polycrystalline silicon patterns and a silicon oxide layer, forming spacer patterns covering sides of the silicon oxide layer, forming a sacrificial layer on a top surface of the support mask layer to cover the silicon oxide layer and the spacer patterns, etching the sacrificial layer and the silicon oxide layer, forming support mask patterns by etching the support mask layer using the polycrystalline silicon patterns and the spacer patterns as an etch mask, and forming activation pins by etching the substrate using the support mask patterns as an etch mask.
Abstract:
A low power detection apparatus and a method for displaying information are provided. When a low power manager drives a proximity detection sensor to generate a proximity interrupt in a state within which the portable terminal is in an idle state, the low power manager drives a motion detection sensor and determines a motion of the portable terminal for a preset time. When there is no motion of the portable terminal for the preset time, the low power manager generates proximity data for displaying screen information and then transmits the generated proximity data to an application processor so as to display screen information which the user desires with low power.
Abstract:
A low power detection apparatus and a method for displaying information are provided. When a low power manager drives a proximity detection sensor to generate a proximity interrupt in a state within which the portable terminal is in an idle state, the low power manager drives a motion detection sensor and determines a motion of the portable terminal for a preset time. When there is no motion of the portable terminal for the preset time, the low power manager generates proximity data for displaying screen information and then transmits the generated proximity data to an application processor so as to display screen information which the user desires with low power.