摘要:
Non-volatile storage systems, and methods for programming non-volatile storage elements of non-volatile storage systems, are described herein. A method for programming a non-volatile storage element, wherein a loop number is incremented with each program-verify iteration includes performing a plurality of program-verify iterations for the non-volatile storage element. This includes inhibiting programming of the non-volatile storage element when the loop number is less than a loop number threshold corresponding to a target data state that the storage element is being programmed to. This also includes enabling programming of the non-volatile storage element when the the loop number is greater than or equal to the loop number threshold corresponding to the target data state that the storage element is being programmed to. Inhibiting programming of the non-volatile storage element causes boosting of a channel voltage of the storage element, which speeds up programming of one or more further non-volatile storage elements neighboring the boosted storage element, compared to if there were no such boosting.
摘要:
When programming a set of non-volatile storage elements using a multi-stage programming process, a series of programming pulses are used for each stage. The magnitude of the initial program pulse for the current stage being performed is dynamically set as a function of the number of program pulses used for the same stage of the multi-stage programming process when programming non-volatile storage elements connected to on one or more previously programmed word lines.
摘要:
When programming a set of non-volatile storage elements using a multi-stage programming process, a series of programming pulses are used for each stage. The magnitude of the initial program pulse for the current stage being performed is dynamically set as a function of the number of program pulses used for the same stage of the multi-stage programming process when programming non-volatile storage elements connected to on one or more previously programmed word lines.
摘要:
A monolithic three dimensional NAND string includes a semiconductor channel located over a substrate, a plurality of control gates extending substantially parallel to the major surface of the substrate including a first control gate located in a first device level and a second control gate located in a second device level located over the substrate and below the first device level, a charge storage material including a silicide layer located in the first device level and in the second device level, a blocking dielectric located between the charge storage material and the plurality of control gates, and a tunnel dielectric located between the charge storage material and the semiconductor channel. The tunnel dielectric has a straight sidewall, portions of the blocking dielectric have a clam shape, and each of the plurality of control gates is located at least partially in an opening in the clam-shaped portion of the blocking dielectric.
摘要:
In a non-volatile storage system, first and second substrate channel regions for an unselected NAND string are boosted during programming to inhibit program disturb. The first and second substrate channel regions are created on either side of an isolation word line. During a program pulse time period in which a program pulse is applied to a selected word line, a voltage applied to an unselected word line which extends directly over the second channel region is stepped up to a respective pre-program pulse voltage, at a faster rate at which a voltage applied to an unselected word line which extends directly over the first channel region is stepped up to a respective pre-program pulse voltage. This helps improve the isolation between the channel regions.
摘要:
A storage module and method are provided for using healing effects of a quarantine process. In one embodiment, a storage module is provided comprising a controller and a memory. The controller is configured to identify a set of memory cells in the memory that contains a bit error rate above a threshold, wherein the bit error rate is above the threshold due to trapped charge in dielectrics of the memory cells. The controller is also configured to quarantine the set of memory cells for a period of time, wherein while the set of memory cells is quarantined, heat generated by the storage module anneals the set of memory cells to at least partially remove the trapped charge.
摘要:
A non-volatile memory system mitigates the effects of open block reading by analyzing the un-programmed region of a block before programming to determine a potential for read disturbance. The system may determine a read count value associated with open block reading of the memory block and/or perform partial block erase verification. To mitigate the effects of open block read disturbance, the system performs partial block erase for the un-programmed region of the memory block and/or limits programming in the un-programmed region.
摘要:
Techniques are presented to reduce the amount of read disturb on partially written blocks of NAND type non-volatile memory, both for when determining the last written word line in a block and also for data read. In both cases, non-selected word lines that are unwritten or, in the case of finding the last written word line, may be unwritten are biased with a lower read-pass voltage then is typically used. The result of such reads can also be applied to an algorithm for finding the last written word by skipping a varying number of word lines. Performance in a last written page determination can also be improved by use of shorter bit line settling times than for a standard read.
摘要:
A memory system or flash card may be exposed to elapsed time or increased temperature conditions which may degrade the memory. For example, extended time periods or high temperature conditions may hinder data retention in a memory device. An estimate of elapsed time and temperature conditions may be useful for memory management. An algorithm that periodically identifies one or more sentinel blocks in the memory device and measures the data retention shift in those sentinel blocks can calculate a scalar value that approximates the combined effect of elapsed time and/or temperature conditions.
摘要:
Techniques are disclosed herein for erasing non-volatile storage. The erase has two or more phases. The first phase includes erasing a group of non-volatile storage elements at a first speed until the group of non-volatile storage elements pass a first verify level. The second phase is performed after the group of non-volatile storage elements pass the first verify level. The second phase includes erasing the group of non-volatile storage elements at a second speed that is less than the first speed until the group of non-volatile storage elements pass a second verify level that is lower than the first verify level. Erasing at the first speed results in a fast erase without significant risk of over-erasing the storage elements. Erasing at the second speed during the second phase prevents or reduces over-erasure which could damage the storage elements.