Abstract:
Methods for improving channel boosting and reducing program disturb during programming of memory cells within a memory array are described. The memory array may comprise a NAND flash memory structure, such as a vertical NAND structure or a bit cost scalable (BiCS) NAND structure. In some cases, by applying continuous voltage ramping to unselected word lines during or throughout a programming operation, the boosting of channels associated with program inhibited memory cells may be improved. In one example, the slope and timing of a Vpass waveform applied to a group of unselected word lines (e.g., the neighboring word lines of the selected word line) during the programming operation may be set based on the location of the selected word line within the memory array and the locations of the group of unselected word lines within the memory array.
Abstract:
A cylindrical confinement electron gas confined within a two-dimensional cylindrical region can be formed in a vertical semiconductor channel extending through a plurality of electrically conductive layers comprising control gate electrodes. A memory film in a memory opening is interposed between the vertical semiconductor channel and the electrically conductive layers. The vertical semiconductor channel includes a wider band gap semiconductor material and a narrow band gap semiconductor material. The cylindrical confinement electron gas is formed at an interface between the wider band gap semiconductor material and the narrow band gap semiconductor material. As a two-dimensional electron gas, the cylindrical confinement electron gas can provide high charge carrier mobility for the vertical semiconductor channel, which can be advantageously employed to provide higher performance for a three-dimensional memory device.
Abstract:
A technique for erasing non-volatile memory such as a NAND string which includes non-user data or dummy storage elements. The voltages of the non-user data storage elements are capacitively coupled higher by controlled increases in an erase voltage which is applied to a substrate. The voltages are floated by rendering a pass gate transistor in a non-conductive state, where the pass gate transistor is between a voltage driver and a non-user data storage element. Voltages of select gate transistors can also be capacitively coupled higher. The substrate voltage can be increased in steps and/or as a continuous ramp. In one approach, outer dummy storage elements are floated while inner dummy storage elements are driven. In another approach, both outer and inner dummy storage elements are floated. Write-erase endurance of the storage elements is increased due to reduced charge trapping between the select gates and the dummy storage elements.
Abstract:
A cylindrical confinement electron gas confined within a two-dimensional cylindrical region can be formed in a vertical semiconductor channel extending through a plurality of electrically conductive layers comprising control gate electrodes. A memory film in a memory opening is interposed between the vertical semiconductor channel and the electrically conductive layers. The vertical semiconductor channel includes a wider band gap semiconductor material and a narrow band gap semiconductor material. The cylindrical confinement electron gas is formed at an interface between the wider band gap semiconductor material and the narrow band gap semiconductor material. As a two-dimensional electron gas, the cylindrical confinement electron gas can provide high charge carrier mobility for the vertical semiconductor channel, which can be advantageously employed to provide higher performance for a three-dimensional memory device.
Abstract:
A memory device includes memory cells arranged in NAND strings between select gate transistors. A threshold voltage (Vth) distribution of the select gate transistors is evaluated, such as in response to a program, erase or read command involving a block or sub-block of memory cells. For example, a lower tail and an upper tail of the Vth distribution can be evaluated using read voltages. If the Vth is out-of-range, such as due to read disturb, data retention loss or defects in the memory device, the block or sub-block is marked as being bad and previously-programmed data in the block or sub-block can be copied to another location. If the Vth is in range, the command can be executed. Also, a control gate voltage for the select gate transistors can be set based on a Vth metric which is obtained from the evaluation.
Abstract:
Methods for improving channel boosting and reducing program disturb during programming of memory cells within a memory array are described. The memory array may comprise a NAND flash memory structure, such as a vertical NAND structure or a bit cost scalable (BiCS) NAND structure. In some cases, by applying continuous voltage ramping to unselected word lines during or throughout a programming operation, the boosting of channels associated with program inhibited memory cells may be improved. In one example, the slope and timing of a Vpass waveform applied to a group of unselected word lines (e.g., the neighboring word lines of the selected word line) during the programming operation may be set based on the location of the selected word line within the memory array and the locations of the group of unselected word lines within the memory array.
Abstract:
Methods for reducing an increase in the threshold voltage of a transistor due to the body effect and increasing the junction breakdown voltage for junctions of the transistor are described. The transistor may comprise an NMOS transistor that transfers a programming voltage (e.g., 24V) to a word line of a memory array during a programming operation. In some cases, a first poly shield may be positioned within a first distance of a gate of the transistor and may comprise a first polysilicon structure that is directly adjacent to the gate of the transistor. The first poly shield may be arranged in a first direction (e.g., in the channel length direction of the transistor). The first poly shield may be biased to a first voltage greater than ground (e.g., 10V) during the programming operation to reduce an increase in the threshold voltage of the transistor due to the body effect.
Abstract:
Disclosed herein are techniques for pre-charging channels when programming memory cells. A pre-charge voltage is applied to both selected bit lines and inhibited bit lines during a channel pre-charge phase. The pre-charge voltage is passed to the channels of NAND strings. The voltage on the inhibited bit lines is then reduced to a program inhibit voltage. Also, the voltage on the selected bit lines is reduced to a program enable voltage. Further, the pre-charge voltage from the channels of the selected NAND strings is discharged while maintaining the pre-charge voltage in the channels of the inhibited NAND strings. The potential in the channels of the inhibited NAND strings may then be boosted and a programming voltage may be applied to a selected word line.
Abstract:
In a 3D stacked non-volatile memory device, multiple smaller drain-end selected gate (SGD) transistors replace one larger SGD transistor. The SGD transistors have different control gate overdrive voltages so that, during a programming operation, a discontinuous channel potential is created in an inhibited NAND string. The SGD transistor closest to the bit line has a lower control gate overdrive voltage so that the channel potential under it is lower, and the next SGD transistor has a higher control gate overdrive voltage so that the channel potential under it is higher. The different control gate overdrive voltages can be provided by programming different threshold voltages, or by providing different control gates voltages, for the SGD transistors. Undesirable reductions in a Vsgd window due to drain-induced barrier lowering can be avoided.
Abstract:
A technique for erasing non-volatile memory such as a NAND string which includes non-user data or dummy storage elements. The voltages of the non-user data storage elements are capacitively coupled higher by controlled increases in an erase voltage which is applied to a substrate. The voltages are floated by rendering a pass gate transistor in a non-conductive state, where the pass gate transistor is between a voltage driver and a non-user data storage element. Voltages of select gate transistors can also be capacitively coupled higher. The substrate voltage can be increased in steps and/or as a continuous ramp. In one approach, outer dummy storage elements are floated while inner dummy storage elements are driven. In another approach, both outer and inner dummy storage elements are floated. Write-erase endurance of the storage elements is increased due to reduced charge trapping between the select gates and the dummy storage elements.