摘要:
A device for controlling the voltage across an NMOS pull-up transistor including a source node which may be exposed to a variable voltage. The device further includes a gate node which may be exposed to a variable voltage. A control portion regulates the voltage applied to the gate node, wherein a differential in voltage between the source node and the gate node is limited to a desired level.
摘要:
A folded bitline DRAM cell is described which includes a trench capacitor and a planar-configured access transistor. The access transistor is stacked over the capacitor and has a first terminal connected thereto. The access transistor includes a planar-oriented gate. A first wordline has a minor surface in contact with the gate and a major surface that is oriented orthogonally to the gate. An insulating pedestal is positioned adjacent the gate and a passing wordline is positioned on the pedestal, the passing wordline having a major surface parallel to the first wordline. In another embodiment, the folded bitline DRAM cell includes a vertically oriented access transistor having one terminal formed on the upper extent of a contact to the trench capacitor, to provide optimum electrical connection thereto.
摘要:
A folded bitline DRAM cell is described which includes a trench capacitor and a planar-configured access transistor. The access transistor is stacked over the capacitor and has a first terminal connected thereto. The access transistor includes a planar-oriented gate. A first wordline has a minor surface in contact with the gate and a major surface that is oriented orthogonally to the gate. An insulating pedestal is positioned adjacent the gate and a passing wordline is positioned on the pedestal, the passing wordline having a major surface parallel to the first wordline. In another embodiment, the folded bitline DRAM cell includes a vertically oriented access transistor having one terminal formed on the upper extent of a contact to the trench capacitor, to provide optimum electrical connection thereto.
摘要:
A sensing technique uses a variable precharge voltage sensing with a single bitline swing in a DRAM cell or array of DRAM cells so that the power dissipation is reduced. The bitline precharge voltage varies from one RAS cycle to the next RAS cycle depending upon the level of the data in the accessed cells. Such an arrangement eliminates the need for a reference voltage generator since the precharge voltage is not the same voltage for each RAS cycle.
摘要:
Sequentially terminated write enable pulses applied to respective input ports of a multi-port memory cell is effective to establish a priority among those input ports and provide unconditionally unambiguous writing to a memory cell when write operations are concurrently attempted at two or more ports of that cell, as may be encountered during rigorous testing procedures. Memory structure, particularly that of the input port circuits, is simplified and operational speed is enhanced since signal propagation through a comparator or logic circuit is avoided. Time required for testing of large memory arrays is also significantly reduced.
摘要:
A sensing circuit for dynamic random access memory is disclosed including a pair of bitlines precharged to a first voltage before sensing. A sense amplifier circuit is provided having one node thereof being connected to an external power supply via a switching means including pulsed sense clocks. Control means is provided and is connected to the switching means for controlling the switching means such that the voltage of the power supply is coupled to the node of the sense amplifier for activation for a predetermined period of time, thereby limiting the swing for the high-going bitline to a second voltage lower than said power supply voltage and higher than the first voltage. The reduced bit-line swings are achieved by means of the pulsed sense clocks and the pulse widths for sense clocks are determined by means of a reference bitlines connected to the control means.
摘要:
A zero-stopping incrementer operates on the recognition that half of all digital values that require incrementing will be even numbers; that is, the least significant bit (LSB) is a binary "0". Incrementing such a number merely requires changing the LSB from a binary "0" to a binary "1". For odd numbers (i.e., those where the LSB is a binary "1"), the zero-stopping incrementer searches for the first binary "0" beginning with the LSB. Once found, that binary "0" is changed to a binary "1" and all the binary "1s" preceding it are changed to binary "0s". No change is required to the higher order bits following the first binary "0". This operation is very fast, the worst case being the case when all the binary bits of the number to be incremented are "1s". Nevertheless, the process is significantly increased, especially for 64-bit numbers which are processed by modern superscalar microprocessors. As compared with conventional incrementers using an adder-like scheme, the zero-stopping incrementer is about three times faster with power consumption less than half of the conventional incrementers.
摘要:
A voltage regulator is provided for controlling an on-chip voltage generator which produces a boost voltage across a charge reservoir for supply to one input of a plurality of word line drivers in a memory array. The regulator is configured such that the charge reservoir voltage will track the power supply voltage and the difference between the power supply voltage and the charge reservoir voltage will be maintained substantially constant over a predefined power supply range. The voltage regulator includes a bandgap reference generator, a first differential circuit for producing a transition voltage from the reference voltage and the power supply voltage, a first transistor for comparing the power supply voltage with the boost voltage, a second transistor for comparing the transition voltage with the reference voltage and a latching comparator for equating the signal outputs from the first and second transistors so as to define a control signal for the on-chip voltage generator. Along with further specific details of the voltage regulator, a preferred bandgap reference generator is described.
摘要:
A flash EEPROM is produced comprising multiple MOS cells. In each cell, programming and erasing are performed through tunneling from the write gate to the floating gate and by tunneling from the floating gate to the erase gate, respectively. The directional dielectric employed is a multilayered structured (MLS) oxide, where thin oxide and thin polycrystalline silicon form alternating layers. The layering is asymmetric: that is, either the uppermost or bottommost layer is thicker than the other layers. As a result of this structure, the oxide exhibits directionality, that is, the tunneling is easier in one direction than the reverse direction, and significantly enhances the tunneling phenomena (tunneling current can be observed at as low as 4.7 V). In addition, the MLS oxide can be fabricated having different dielectric constants. The directionality, coupled with the separate write and erase gates, gives the new flash EEPROM cell a number of advantages: it is low-voltage operable, it is highly resistant to disturbance and has an easily scalable structure (that is, it can be made to operate at any given voltage within a specified scale).
摘要:
Disclosed is a Dynamic Random Access Memory (DRAM) cell which includes a storage capacitor disposed in a trench formed in a semiconductor substrate and an access transistor disposed in a well which is opposite in conductivity type to that of the substrate and a buried oxide collar which surrounds an upper portion of the trench.