摘要:
A semiconductor device includes an active pattern protruding from a substrate, gate structures crossing over the active pattern, gate spacers on sidewalls of the gate structures, a source/drain region n the active pattern between the gate structures, and a source/drain contact on and connected to the source/drain region. The source/drain contact includes a first portion between the gate structures and being in contact with the gate spacers, a second portion on the first portion and not being in contact with the gate spacers, and a third portion on the second portion. A first boundary between the second and third portions is at the substantially same height as a top surface of the gate structure.
摘要:
The semiconductor device may include an insulating interlayer on the substrate, the substrate including a contact region at an upper portion thereof, a main contact plug penetrating through the insulating interlayer and contacting the contact region, the main contact plug having a pillar shape and including a first barrier pattern and a first metal pattern, and an extension pattern surrounding on an upper sidewall of the main contact plug, the extension pattern including a barrier material. In the semiconductor device, an alignment margin between the contact structure and an upper wiring thereon may increase. Also, a short failure between the contact structure and the gate electrode may be reduced.
摘要:
A semiconductor device is provided. The semiconductor device includes a gate spacer that defines a trench on a substrate and includes an upper part and a lower part, a gate insulating film that extends along sidewalls and a bottom surface of the trench and is not in contact with the upper part of the gate spacer, a lower conductive film that extends on the gate insulating film along the sidewalls and the bottom surface of the trench and is not overlapped with the upper part of the gate spacer, and an upper conductive film on an uppermost part of the gate insulating film on the lower conductive film.
摘要:
A semiconductor device is provided. The semiconductor device includes a gate spacer that defines a trench on a substrate and includes an upper part and a lower part, a gate insulating film that extends along sidewalls and a bottom surface of the trench and is not in contact with the upper part of the gate spacer, a lower conductive film that extends on the gate insulating film along the sidewalls and the bottom surface of the trench and is not overlapped with the upper part of the gate spacer, and an upper conductive film on an uppermost part of the gate insulating film on the lower conductive film.
摘要:
A method of fabricating semiconductor devices having metal gate electrodes includes forming an insulating layer on a semiconductor substrate having a first region and a second region. The insulating layer is formed to include an interlayer insulating layer and a gate insulation layer. The interlayer insulating layer has first and second grooves respectively disposed in the first and second regions, and the gate insulation layer covers at least bottom surfaces of the first and second grooves. A laminated metal layer is formed on the substrate having the insulating layer. A planarization layer having non-photo sensitivity is formed on the laminated metal layer. The planarization layer in the first region is selectively removed using a dry etching process to expose the laminated metal layer in the first region and to form a planarization layer pattern covering the laminated metal layer in the second region.
摘要:
A method of fabricating semiconductor devices having metal gate electrodes includes forming an insulating layer on a semiconductor substrate having a first region and a second region. The insulating layer is formed to include an interlayer insulating layer and a gate insulation layer. The interlayer insulating layer has first and second grooves respectively disposed in the first and second regions, and the gate insulation layer covers at least bottom surfaces of the first and second grooves. A laminated metal layer is formed on the substrate having the insulating layer. A planarization layer having non-photo sensitivity is formed on the laminated metal layer. The planarization layer in the first region is selectively removed using a dry etching process to expose the laminated metal layer in the first region and to form a planarization layer pattern covering the laminated metal layer in the second region.
摘要:
A method of fabricating a semiconductor device is described. The method of fabricating a semiconductor device comprises providing a fin formed to protrude from a substrate and a plurality of gate electrodes formed on the fin to intersect the fin; forming first recesses in the fin on at least one side of the respective gate electrodes; forming an oxide layer on the surfaces of the first recesses; and expanding the first recesses into second recesses by removing the oxide layer. Related devices are also disclosed.
摘要:
A method of fabricating a semiconductor device can be provided by etching sidewalls of a preliminary trench in a substrate that are between immediately adjacent gate electrode structures, to recess the sidewalls further beneath the gate electrode structures to provide recessed sidewalls. Then, the recessed sidewalls and a bottom of the preliminary trench can be etched using crystallographic anisotropic etching to form a hexagonally shaped trench in the substrate.
摘要:
A semiconductor device includes a semiconductor substrate having at least two oblique side surfaces and a first bottom surface in a recessed portion. A gate insulating layer is formed on the recessed portion. A gate electrode is formed on the gate insulating layer. A channel region is formed below the gate electrode. Gate spacers are formed on side surfaces of the gate electrode.
摘要:
A semiconductor integrated circuit device includes a substrate. A gate structure is formed on the substrate and includes a gate insulating film and a gate electrode. A first sidewall spacer is formed on two sidewalls of the gate structure. A second sidewall spacer is formed on the first sidewall spacer. A recess compensation film is interposed between the second sidewall spacer and the substrate. An epitaxial layer is in contact with the recess compensation film.