摘要:
Systems and apparatus are disclosed for adjusting the temperature of at least a portion of the surface of a reaction chamber during a film formation process to control film properties. More than one portion of the chamber surface may be temperature-modulated.
摘要:
Methods are disclosed for adjusting the temperature of at least a portion of the surface of a reaction chamber during a film formation process to control film properties. More than one portion of the chamber surface may be temperature-modulated, and may be accomplished by actively keeping the temperature of a first wall of the reaction chamber above the temperature of a second wall during the film formation process.
摘要:
Systems and apparatus are disclosed for adjusting the temperature of at least a portion of the surface of a reaction chamber during a film formation process to control film properties. More than one portion of the chamber surface may be temperature-modulated.
摘要:
Methods, systems and apparatus are disclosed for adjusting the temperature of at least a portion of the surface of a reaction chamber during a film formation process to control film properties. More than one portion of the chamber surface may be temperature-modulated.
摘要:
Methods and apparatus are disclosed for the formation and utilization of metastable specie in a reaction chamber for processing substrates. The metastable specie may be used for etching the surface of substrates in situ, deposition processes during processing of the substrate.
摘要:
Methods and apparatus are disclosed for the formation and utilization of metastable specie in a reaction chamber for processing substrates. The metastable specie may be used for etching the surface of substrates in situ, deposition processes during processing of the substrate.
摘要:
A method for epitaxially forming a silicon-containing material on a substrate surface utilizes a halogen containing gas as both an etching gas as well as a carrier gas through adjustments of the process chamber temperature and pressure. It is beneficial to utilize HCl as the halogen containing gas because converting HCl from a carrier gas to an etching gas can easily be performed by adjusting the chamber pressure.
摘要:
Methods and apparatus for processing substrates are disclosed herein. In some embodiments, an apparatus for processing a substrate may include a substrate support having a base having a convex surface, an annular ring disposed on the base, and an edge ring disposed on the annular ring to support a substrate, wherein the base, annular ring, and edge ring form a radiant cavity capable of reflecting energy radiated from a backside of a substrate when disposed on the edge ring and wherein the backside of the substrate faces the convex surface of the base. Alternatively or in combination, in some embodiments, the base may include a metal layer encapsulated between a transparent non-metal upper layer and a non-metal lower layer.
摘要:
Methods and apparatus are disclosed for the formation of vaporizing liquid precursor materials. The methods or apparatus can be used as part of a chemical vapor deposition apparatus or system, for example for forming films on substrates. The methods and apparatus involve providing a vessel for containing a liquid precursor and diffusing element having external cross-section dimensions substantially equal to the internal cross-sectional dimensions of the vessel.
摘要:
A method of preparing a clean substrate surface for blanket or selective epitaxial deposition of silicon-containing and/or germanium-containing films. In addition, a method of growing the silicon-containing and/or germanium-containing films, where both the substrate cleaning method and the film growth method are carried out at a temperature below 750° C., and typically at a temperature from about 700° C. to about 500° C. The cleaning method and the film growth method employ the use of radiation having a wavelength ranging from about 310 nm to about 120 nm in the processing volume in which the silicon-containing film is grown. Use of this radiation in combination with particular partial pressure ranges for the reactive cleaning or film-forming component species enable the substrate cleaning and epitaxial film growth at temperatures below those previously known in the industry.