摘要:
A light source comprising a light emitting diode comprising a GaN-based compound and having a single quantum well structure, and a driving voltage source for applying a pulse voltage to the light emitting diode, wherein a voltage at a low level of the pulse voltage is set to a voltage lower than a voltage at which a fall time of the light emitting diode is made the longest.
摘要:
A light source comprising a light emitting diode comprising a GaN-based compound and having a single quantum well structure, and a driving voltage source for applying a pulse voltage to the light emitting diode, wherein a voltage at a low level of the pulse voltage is set to a voltage lower than a voltage at which a fall time of the light emitting diode is made the longest.
摘要:
Disclosed is a Group III nitride compound semiconductor light-emitting element formed of Group III nitride compound semiconductor layers, including a multi-layer containing light-emitting layers; a p-type semiconductor layer; and an n-type semiconductor layer, wherein the multi-layer includes a multiple quantum barrier-well layer containing quantum-barrier-formation barrier layers formed from a Group III nitride compound semiconductor and quantum-barrier-formation well layers formed from a Group III nitride compound semiconductor, the barrier layers and the well layers being laminated alternately and cyclically, and a plurality of low-energy-band-gap layers which emit light of different wavelengths; and the multiple quantum barrier-well layer is provided between the low-energy-band-gap layers.
摘要:
A laser diode using Group III nitride compound semiconductor consists of In.sub.0.2 Ga.sub.0.8 N/GaN SQW active layer 5, a pair of GaN guide layers 41 and 62, sandwiching the active layer with wider forbidden band than the active layer, and a pair of Al.sub.0.08 Ga.sub.0.92 N cladding layer 4 and 71, sandwiching a pair of the guide layers, and the LD confines carriers and light separately. Al.sub.0.15 Ga.sub.0.75 N stopper layers 41 and 62 with wider forbidden band than the guide layers are formed in some portion of each of the guide layers 41 and 62 in parallel to the active layer. As a result, carriers are confined in the active layer and the laser output of the LD is improved.
摘要翻译:使用III族氮化物化合物半导体的激光二极管由In0.2Ga0.8N / GaN SQW有源层5,一对GaN引导层41和62组成,其中活性层具有比有源层更宽的禁带,以及一对 Al0.08Ga0.92N包覆层4和71夹着一对引导层,LD分别限制载流子和光。 每个引导层41和62的一部分平行于有源层形成具有比引导层更宽的禁带宽度的Al 0.15 Ga 0.75 N阻挡层41和62。 结果,载流子被限制在有源层中,并且LD的激光输出被改善。
摘要:
A light-emitting device includes a light-emitting diode, a red light-emitting phosphor layer, a yellow light-emitting phosphor layer, and a blue light-emitting phosphor layer. These layers are stacked in the stacking sequence of the yellow, blue, and red phosphor layers in order of increasing distance from the LED. The stacking sequence of the yellow and blue phosphor layers is first determined in such a manner that these layers do not interact with each other. The stacking sequence of the red and yellow phosphor layers and the stacking sequence of the red and blue phosphor layers are determined by the discriminant D. This determination of the stacking sequence suppresses a reduction in the conversion efficiency of the phosphors due to concentration quenching, improving the emission efficiency of the light-emitting device.
摘要:
A light-emitting device includes a light-emitting diode, a red light-emitting phosphor layer, a yellow light-emitting phosphor layer, and a blue light-emitting phosphor layer. These layers are stacked in the stacking sequence of the yellow, blue, and red phosphor layers in order of increasing distance from the LED. The stacking sequence of the yellow and blue phosphor layers is first determined in such a manner that these layers do not interact with each other. The stacking sequence of the red and yellow phosphor layers and the stacking sequence of the red and blue phosphor layers are determined by the discriminant D. This determination of the stacking sequence suppresses a reduction in the conversion efficiency of the phosphors due to concentration quenching, improving the emission efficiency of the light-emitting device.
摘要:
An increased proportion of light projected from a nitride semiconductor light emitting diode enters the area within a specified angle.The nitride semiconductor light emitting diode is provided with an active layer 32 consisting of a nitride semiconductor, and a light projecting face 21. A reflecting mirror 38 is formed only on a side of the active layer 32 opposite the light projecting face 21. The reflecting mirror 38 is formed at a location from the center of the active layer 32 approximately (k·λ/2+λ/4)/n (where λ is the wavelength of light projected from the active layer 32, n is the mean refractive index of an area between the active layer 32 and the reflecting mirror 38, and k is an integer). This light emitting diode allows directivity to be increased sufficiently, and the coupling efficiency thereof with optical fiber consisting of POF or the like can be improved.
摘要:
The present invention provides a p-type group III nitride semiconductor production method which is excellent in terms of reliability and reproducibility. A photoresist mask is formed on a surface of an n−-GaN layer. Subsequently, an Mg film is formed so as to cover the n−-GaN layer and the photoresist mask, and an Ni/Pt metal film is formed on the Mg film. Thereafter, the photoresist mask is removed, whereby the Mg film and the metal film remain only on a portion of the n−-GaN layer where a p-type region is formed. Subsequently, when thermal treatment is performed in an ammonia atmosphere at 900° C. for three hours, Mg is diffused in the n−-GaN layer while being activated. Therefore, a p-type region is formed. Thereafter, the Mg film and the metal film are removed by use of aqua regia.
摘要:
A process of forming separation grooves for separating a semiconductor wafer into individual light-emitting devices, a process for thinning the substrate, process for adhering the wafer to the adhesive sheet to expose a substrate surface on the reverse or backside of the wafer, a scribing process for forming split lines in the substrate for dividing the wafer into light-emitting devices, and a process of forming a mirror structure comprising a light transmission layer, a reflective layer, and a corrosion-resistant layer, which are laminated in sequence using sputtering or deposition processes. Because the light transmission layer is laminated on the adhesive sheet, gases normally volatilized from the adhesion materials are sealed and do not chemically combine with the metal being deposited as the reflective layer. As a result, reflectivity of the reflective layer can be maintained.
摘要:
An HEMT type transistor is disclosed that is a normally off type, and in which variations in the gate threshold voltage are small. A transistor is provided with a p-type region, a barrier region, an insulation film, a gate electrode. The channel region is connected to an upper surface of the p-type region. The channel region is n-type or i-type and provided with a first channel region and a second channel region. The barrier region is forming a hetero-junction with an upper surface of the first channel region. The insulation film is connected to an upper surface of the second channel region and an upper surface of the barrier region. The gate electrode faces the second channel region and the barrier region via the insulation film. The first channel region and the second channel region are arranged in series in a current pathway.